
EWERTON RODRIGUES ANDRADE

LYRA2: PASSWORD HASHING SCHEME
WITH IMPROVED SECURITY AGAINST

TIME-MEMORY TRADE-OFFS

LYRA2: UM ESQUEMA DE HASH DE
SENHAS COM MAIOR SEGURANÇA

CONTRA TRADE-OFFS ENTRE
PROCESSAMENTO E MEMÓRIA

Tese apresentada à Escola Politécnica da

Universidade de São Paulo para obtenção

do Título de Doutor em Ciências.

São Paulo
2016

EWERTON RODRIGUES ANDRADE

LYRA2: PASSWORD HASHING SCHEME
WITH IMPROVED SECURITY AGAINST

TIME-MEMORY TRADE-OFFS

LYRA2: UM ESQUEMA DE HASH DE
SENHAS COM MAIOR SEGURANÇA

CONTRA TRADE-OFFS ENTRE
PROCESSAMENTO E MEMÓRIA

Tese apresentada à Escola Politécnica da

Universidade de São Paulo para obtenção

do Título de Doutor em Ciências.

Área de Concentração:

Engenharia de Computação

Orientador:

Prof. Dr. Marcos A. Simplicio Junior

São Paulo
2016

Catalogação-na-publicação

Andrade, Ewerton Rodrigues
 Lyra2: Password Hashing Scheme with improved security against time
memory trade-offs (Lyra2: Um Esquema de Hash de Senhas com maior
segurança contra trade-offs entre processamento e memória) / E. R. Andrade --
São Paulo, 2016.
 135 p.

 Tese (Doutorado) - Escola Politécnica da Universidade de São Paulo.
Departamento de Engenharia de Computação e Sistemas Digitais.

 1.Metodologia e técnicas de computação 2.Segurança de computadores
3.Criptologia 4.Algoritmos 5.Esquemas de Hash de Senhas I.Universidade de
São Paulo. Escola Politécnica. Departamento de Engenharia de Computação e
Sistemas Digitais II.t.

RESUMO

Para proteger-se de ataques de força bruta, sistemas modernos de autentica-
ção baseados em senhas geralmente empregam algum Esquema de Hash de Senhas
(Password Hashing Scheme - PHS). Basicamente, um PHS é um algoritmo crip-
tográfico que gera uma sequência de bits pseudo-aleatórios a partir de uma senha
provida pelo usuário, permitindo a este último configurar o custo computacional
envolvido no processo e, assim, potencialmente elevar os custos de atacantes tes-
tando múltiplas senhas em paralelo. Esquemas tradicionais utilizados para esse
propósito são o PBKDF2 e bcrypt, por exemplo, que incluem um parâmetro con-
figurável que controla o número de iterações realizadas pelo algoritmo, permitindo
ajustar-se o seu tempo total de processamento. Já os algoritmos scrypt e Lyra,
mais recentes, permitem que usuários não apenas controlem o tempo de processa-
mento, mas também a quantidade de memória necessária para testar uma senha.
Apesar desses avanços, ainda há um interesse considerável da comunidade de pes-
quisa no desenvolvimento e avaliação de novas (e melhores) alternativas. De fato,
tal interesse levou recentemente à criação de uma competição com esta finalidade
específica, a Password Hashing Competition (PHC). Neste contexto, o objetivo
do presente trabalho é propor uma alternativa superior aos PHS existentes. Es-
pecificamente, tem-se como alvo melhor o algoritmo Lyra, um PHS baseado em
esponjas criptográficas cujo projeto contou com a participação dos autores do
presente trabalho. O algoritmo resultante, denominado Lyra2, preserva a segu-
rança, eficiência e flexibilidade do Lyra, incluindo a habilidade de configurar do
uso de memória e tempo de processamento do algoritmo, e também a capacidade
de prover um uso de memória superior ao do scrypt com um tempo de proces-
samento similar. Entretanto, ele traz importantes melhorias quando comparado
ao seu predecessor: (1) permite um maior nível de segurança contra estratégias
de ataque envolvendo trade-offs entre tempo de processamento e memória; (2)
inclui a possibilidade de elevar os custos envolvidos na construção de plataformas
de hardware dedicado para ataques contra o algoritmo; (3) e provê um equilíbrio
entre resistância contra ataques de canal colateral (“side-channel ”) e ataques que
se baseiam no uso de dispositivos de memória mais baratos (e, portanto, mais
lentos) do que os utilizados em computadores controlados por usuários legítimos.
Além da descrição detalhada do projeto do algoritmo, o presente trabalho inclui
também uma análise detalhada de sua segurança e de seu desempenho em di-
ferentes plataformas. Cabe notar que o Lyra2, conforme aqui descrito, recebeu
uma menção de reconhecimento especial ao final da competição PHC previamente
mencionada.

Palavras-chave: derivação de chaves, senhas, autenticação de usuários, se-
gurança, esponjas criptográficas.

ABSTRACT

To protect against brute force attacks, modern password-based authentication
systems usually employ mechanisms known as Password Hashing Schemes (PHS).
Basically, a PHS is a cryptographic algorithm that generates a sequence of pseu-
dorandom bits from a user-defined password, allowing the user to configure the
computational costs involved in the process aiming to raise the costs of attackers
testing multiple passwords trying to guess the correct one. Traditional schemes
such as PBKDF2 and bcrypt, for example, include a configurable parameter that
controls the number of iterations performed, allowing the user to adjust the time
required by the password hashing process. The more recent scrypt and Lyra
algorithms, on the other hand, allow users to control both processing time and
memory usage. Despite these advances, there is still considerable interest by the
research community in the development of new (and better) alternatives. Indeed,
this led to the creation of a competition with this specific purpose, the Password
Hashing Competition (PHC). In this context, the goal of this research effort is to
propose a superior PHS alternative. Specifically, the objective is to improve the
Lyra algorithm, a PHS built upon cryptographic sponges whose project counted
with the authors’ participation. The resulting solution, called Lyra2, preserves
the security, efficiency and flexibility of Lyra, including: the ability to configure
the desired amount of memory and processing time to be used by the algorithm;
and (2) the capacity of providing a high memory usage with a processing time
similar to that obtained with scrypt. In addition, it brings important impro-
vements when compared to its predecessor: (1) it allows a higher security level
against attack venues involving time-memory trade-offs; (2) it includes tweaks for
increasing the costs involved in the construction of dedicated hardware to attack
the algorithm; (3) it balances resistance against side-channel threats and attacks
relying on cheaper (and, hence, slower) storage devices. Besides describing the
algorithm’s design rationale in detail, this work also includes a detailed analysis
of its security and performance in different platforms. It is worth mentioning that
Lyra2, as hereby described, received a special recognition in the aforementioned
PHC competition.

Keywords: Password-based key derivation, passwords, authentication, se-
curity, cryptographic sponges.

CONTENTS

List of Figures viii

List of Tables x

List of Acronyms xi

List of Symbols xii

1 Introduction 13

1.1 Motivation . 14

1.2 Goals and Original Contributions 16

1.3 Methods . 17

1.4 Document Organization . 18

2 Background 19

2.1 Hash-Functions . 19

2.1.1 Security . 20

2.2 Cryptographic Sponges . 21

2.2.1 Basic Structure . 21

2.2.2 The duplex construction 22

2.2.3 Security . 23

2.3 Password Hashing Schemes (PHS) 23

2.3.1 Attack platforms . 25

2.3.1.1 Graphics Processing Units (GPUs) 25

2.3.1.2 Field Programmable Gate Arrays (FPGAs) . . . 26

3 Related Works 28

3.1 Pre-PHC Schemes . 28

3.1.1 PBKDF2 . 29

3.1.2 Bcrypt . 30

3.1.3 Scrypt . 32

3.1.4 Lyra . 34

3.2 Schemes from PHC . 37

3.2.1 Argon2 . 38

3.2.2 battcrypt . 40

3.2.3 Catena . 40

3.2.4 POMELO . 42

3.2.5 yescrypt . 43

4 Lyra2 45

4.1 Structure and rationale . 47

4.1.1 Bootstrapping . 47

4.1.2 The Setup phase . 48

4.1.3 The Wandering phase . 52

4.1.4 The Wrap-up phase . 54

4.2 Strictly sequential design . 54

4.3 Configuring memory usage and processing time 57

4.4 On the underlying sponge . 57

4.4.1 A dedicated, multiplication-hardened sponge: BlaMka. . . 59

4.5 Practical considerations . 60

5 Security analysis 63

5.1 Low-Memory attacks . 64

5.1.1 Preliminaries . 66

5.1.2 The Setup phase . 67

5.1.2.1 Storing only what is needed: 1/2 memory usage . 68

5.1.2.2 Storing less than what is needed: 1/4 memory usage 69

5.1.2.3 Storing less than what is needed: 1/8 memory usage 71

5.1.2.4 Storing less than what is needed: generalization . 75

5.1.2.5 Storing only intermediate sponge states 78

5.1.3 Adding the Wandering phase: consumer-producer strategy 81

5.1.3.1 The first R/2 iterations of the Wandering phase

with 1/2 memory usage. 82

5.1.3.2 The whole Wandering phase with 1/2 memory usage 85

5.1.3.3 The whole Wandering phase with less than 1/2

memory usage 87

5.1.4 Adding the Wandering phase: sentinel-based strategy . . . 88

5.1.4.1 On the (low) scalability of the sentinel-based stra-

tegy . 91

5.2 Slow-Memory attacks . 94

5.3 Cache-timing attacks . 96

5.4 Garbage-Collector attacks . 99

5.5 Security analysis of BlaMka. 100

5.6 Summary . 101

6 Performance for different settings 103

6.1 Benchmarks for Lyra2 . 103

6.2 Benchmarks for BlaMka. 108

6.3 Benchmarks for Lyra2 with BlaMka 112

6.4 Expected attack costs . 113

6.5 Summary . 114

7 Final Considerations 116

7.1 Publications and other results . 116

7.2 Future works . 118

References 119

Appendix A. Naming conventions 129

Appendix B. Further controlling Lyra2’s bandwidth usage 130

Appendix C. An alternative design for BlaMka: avoiding latency 132

LIST OF FIGURES

1 Overview of the sponge construction Z = [f, pad, b](M, `). Adap-

ted from (BERTONI et al., 2011a). 21

2 Overview of the duplex construction. Adapted from (BERTONI

et al., 2011a). 22

3 Handling the sponge’s inputs and outputs during the Setup (left)

and Wandering (right) phases in Lyra2. 50

4 BlaMka’s multiplication-hardened (right) and Blake2b’s original

(left) permutations. 59

5 The Setup phase. 68

6 Attacking the Setup phase: storing 1/2 of all rows. 68

7 Attacking the Setup phase: storing 1/4 of all rows. 70

8 Attacking the Setup phase: recomputing M [6A] while storing 1/8

of all rows and keeping M [F] in memory. 74

9 Attacking the Setup phase: storing only sponge states. 78

10 Reading and writing cells in the Setup phase. 80

11 An example of the Wandering phase’s execution. 81

12 Tree representing the dependence among rows in Lyra2. 86

13 Tree representing the dependence among rows in Lyra2 with T = 2:

using ε′ sentinels per level. 92

14 Performance of SSE-enabled Lyra2, for C = 256, ρ = 1, p = 1,

and different T and R settings, compared with SSE-enabled scrypt. 104

15 Performance of SSE-enabled Lyra2, for C = 256, ρ = 1, p = 1, and

different T and R settings, compared with SSE-enabled scrypt and

memory-hard PHC finalists with minimum parameters. 105

16 Performance of SSE-enabled Lyra2, for C = 256, ρ = 1, p = 1 and

different T and R settings, compared with SSE-enabled scrypt and

memory-hard PHC finalists with a similar number of calls to the

underlying function. 106

17 Performance of SSE-enabled Lyra2 with BlaMka, for C = 256,

ρ = 1, p = 1, and different T and R settings, compared with

SSE-enabled scrypt and memory-hard PHC finalists 112

18 Different permutations: Blake2b’s original permutation (left),

BlaMka’s Gtls multiplication-hardened permutation (middle) and

BlaMka’s latency-oriented multiplication-hardened permutation

Gtls⊕ (right). 132

19 Improving the latency of G. 134

LIST OF TABLES

1 Indices of the rows that feed the sponge when computing M [row]

during Setup (hexadecimal notation). 52

2 Security overview of the PHSs considered the state of art. 102

3 PHC finalists: calls to underlying primitive in terms of their time

and memory parameters, T and M , and their implementations. . 107

4 Data related of the tests performed in CPU, executing just one

round of G function (i.e., 256 bits of output). 109

5 Data related of the initial tests performed in FPGA, executing just

one round of G function (i.e., 256 bits of output). 111

6 Data related of the initial tests performed in dedicated hardware

(that present advantage against CPU), executing just one round

of G function (i.e., 256 bits of output). 111

7 Memory-related cost (in U$) added by the SSE-enable version of

Lyra2 with T = 1 and T = 5, for attackers trying to break pas-

swords in a 1-year period using an Intel Xeon E5-2430 or equivalent

processor. 114

LIST OF ACRONYMS

GPU Graphics Processing Unit

FPGA Field-Programmable Gate Array

KDF Key Derivation Function

PHS Password Hashing Scheme

PHC Password Hashing Competition

ASIC Application Specific Integrated Circuit

HMAC Hash-based Message Authentication Code

RAM Random Access Memory

TMTO Time-Memory trade-offs

PBKDF2 Password-Based Key Derivation Function 2

bcrypt Blowfish crypt

XOR Excusive-OR operation

SHA Secure Hash Algorithm

AES Advanced Encryption Standard

CUDA Compute Unified Device Architecture

OpenCL Open Computing Language

SIMD Single Instruction, Multiple Data

SSE Streaming SIMD Extensions

AVX Advanced Vector Extensions

LIST OF SYMBOLS

⊕ bitwise Exclusive-OR (XOR) operation

� wordwise add operation (i.e., ignoring carries between words)

‖ concatenation

|x| bit-length of x, i.e., the minimum number of bits required for repre-

senting x

len(x) byte-length of x, i.e., the minimum number of bytes required for

representing x

lsw(x) the least significant word of x

x≫ n n-bit right rotation of x

rot(x) ω-bit right rotation of x

roty(x) ω-bit right rotation of x repeated y times

13

1 INTRODUCTION

User authentication is one of the most vital elements in modern computer

security. Even though there are authentication mechanisms based on biometric

devices (“what the user is”) or physical devices such as smart cards (“what the user

has”), the most widespread strategy still is to rely on secret passwords (“what the

user knows”). This happens because password-based authentication remains as

the most cost effective and efficient method of maintaining a shared secret between

a user and a computer system (CHAKRABARTI; SINGBAL, 2007; CONKLIN;

DIETRICH; WALZ, 2004). For better or for worse, and despite the existence of

many proposals for their replacement (BONNEAU et al., 2012), this prevalence

of passwords as one and commonly only factor for user authentication is unlikely

to change in the near future.

Password-based systems usually employ some cryptographic algorithm that

allows the generation of a pseudorandom string of bits from the password itself,

known as a Password Hashing Scheme (PHS), or Key Derivation Function (KDF)

(NIST, 2009). Typically, the output of the PHS is employed in one of two manners

(PERCIVAL, 2009): it can be locally stored in the form of a “token” for future

verifications of the password or used as the secret key for encrypting and/or

authenticating data. Whichever the case, such solutions employ internally a one-

way (e.g., hash) function, so that recovering the password from the PHS’s output

is computationally infeasible (PERCIVAL, 2009; KALISKI, 2000).

14

Despite the popularity of password-based authentication, the fact that most

users choose quite short and simple strings as passwords leads to a serious issue:

they commonly have much less entropy than typically required by cryptographic

keys (NIST, 2011). Indeed, a study from 2007 with 544,960 passwords from real

users has shown an average entropy of approximately 40.5 bits (FLORENCIO;

HERLEY, 2007), against the 128 bits usually required by modern systems. Such

weak passwords greatly facilitate many kinds of “brute-force” attacks, such as

dictionary attacks and exhaustive search (CHAKRABARTI; SINGBAL, 2007;

HERLEY; OORSCHOT; PATRICK, 2009), allowing attackers to completely by-

pass the non-invertibility property of the password hashing process.

For example, an attacker could apply the PHS over a list of common pas-

swords until the result matches the locally stored token or the valid encryp-

tion/authentication key. The feasibility of such attacks depends basically on

the amount of resources available to the attacker, who can speed up the pro-

cess by performing many tests in parallel. Such attacks commonly benefit from

platforms equipped with many processing cores, such as modern GPUs (DÜR-

MUTH; GÜNEYSU; KASPER, 2012; SPRENGERS, 2011) or custom hardware

(DÜRMUTH; GÜNEYSU; KASPER, 2012; MARECHAL, 2008).

1.1 Motivation

A straightforward approach for addressing this problem is to force users to

choose complex passwords. This is unadvised, however, because such passwords

would be harder to memorize and, thus, more easily forgotten or stolen due to the

users’ need of writing them down, defeating the whole purpose of authentication

(CHAKRABARTI; SINGBAL, 2007). For this reason, modern password hashing

solutions usually employ mechanisms for increasing the cost of brute force attacks.

Schemes such as PBKDF2 (KALISKI, 2000) and bcrypt (PROVOS; MAZIÈRES,

15

1999), for example, include a configurable parameter that controls the number

of iterations performed, allowing the user to adjust the time required by the

password hashing process.

A more recent proposal, scrypt (PERCIVAL, 2009), allows users to control

both processing time and memory usage, raising the cost of password recovery

by increasing the silicon space required for running the PHS in custom hardware,

or the amount of RAM required in a GPU. Since this may raise the RAM costs

of password cracking to unbearable levels, attackers may try to trade memory

for processing time, discarding (parts of) the memory used and recomputing the

discarded information when (and only when) it becomes necessary (PERCIVAL,

2009). The exploitation of such time-memory trade-offs (TMTO) leads to the

hereby-called low-memory attacks. Another approach that might be used by

attackers trying to reduce the costs of password cracking is to use low-cost (and,

thus, slower) storage devices for keeping all memory used in the legitimate process,

using the spare budget to run more tests in parallel and, thus, compensating the

lower speed of each test; we call this approach a slow-memory attack.

Besides the need for protection against low- and slow-memory attacks, there

is also interest in the development of solutions that are safe against side-channel

attacks, in especial the so-called cache-timing attacks. Basically, a cache-timing

attack is possible if the attacker can observe a machine’s timing behavior by moni-

toring its access to cache memory (e.g., the occurrence of cache-misses), building

a profile of such occurrences for a legitimate password hashing process (FORLER;

LUCKS; WENZEL, 2013; BERNSTEIN, 2005). Then, at least in theory, if the

password being tested does not match the observed cache-timing behavior, the

test could be aborted earlier, saving resources. Although this class of attack has

not been effectively implemented in the context of PHSs, it has been shown to be

effective, for example, against certain implementations of the Advanced Encryp-

16

tion Standard (AES) (NIST, 2001a) and RSA (RIVEST; SHAMIR; ADLEMAN,

1978).

The considerable interest by the research community in developing new (and

better) password hashing alternatives has recently even led to the creation of

a cryptographic competition with this specific purpose, the Password Hashing

Competition (PHC) (PHC, 2013).

1.2 Goals and Original Contributions

Aiming to address this need for stronger alternatives, our early studies led

to the proposal of Lyra (ALMEIDA et al., 2014), a mode of operation of crypto-

graphic sponges (BERTONI et al., 2007; BERTONI et al., 2011a) for password

hashing. In this research, we propose an improved version of Lyra, called simply

Lyra2.

Basically, Lyra2 preserves the flexibility and efficiency of Lyra, including:

1. The ability to configure the desired amount of memory and processing time

to be used by the algorithm;

2. The capacity of providing a higher memory usage than what is obtained

with scrypt for a similar processing time.

In addition, it brings important security improvements when compared to its

predecessor:

1. It allows a higher security level against attack venues involving time-

memory trade-offs (TMTO);

2. It includes tweaks to increase the costs involved in the construction of de-

dicated hardware for attacking the algorithm (e.g., FPGAs or ASICs);

17

3. It balances resistance against side-channel threats and attacks relying on

cheaper (and, hence, slower) storage devices.

For example, the processing cost of memory-free attacks against the algorithm

grows exponentially with its time-controlling parameter, surpassing scrypt’s qua-

dratic growth in the same conditions. Hence, with a suitable choice of parameters,

the attack approach of using extra processing for circumventing (part of) the algo-

rithm’s memory needs becomes quickly impractical. In addition, for an identical

processing time, Lyra2 allows for a higher memory usage than its counterparts,

further raising the costs of any possible attack venue.

1.3 Methods

The method adopted in this work is the applied research based on the

hypothesis-deduction approach, i.e., by using scientific references to define the

problem, specify the solution hypotheses and, finally, evaluate them (WAZ-

LAWICK, 2008).

For accomplishing this, the work was separated according to the following

steps:

• Literature research: survey of existing PHS, based on the analysis of aca-

demic articles and technical manuals. This included a comparison between

existing solutions and the evaluation of their internal structures, security

and performance, making it possible to determine attractive approaches to

create a novel algorithm;

• Design of algorithm: using as basis the literature research, this step consists

in the proposal of a novel PHS, called Lyra2. This new algorithm preserves

the flexibility of existing functions (including its predecessor, Lyra), but

18

provides higher security. This step also involves the development of a refe-

rence implementation for allowing validation of its viability and comparison

with existing PHS solutions;

• Evaluation: comparison between the structures of the current PHSs and

the Lyra2 in order to verify that, (1) by construction, Lyra2’s security is

higher than that provided by existing PHS, and (2) its performance is at

least as good as that of alternative solutions;

• Thesis writing : creation of a thesis encompassing the obtained results and

analyses.

These steps are rather sequential, with frequent iterations between them (e.g.,

performance measurements usually lead to improvements to the algorithm’s de-

sign).

1.4 Document Organization

The rest of this document is organized as follows. Chapter 2 describes the

basic notation and outlines the concept of hash functions, cryptographic sponges

and password hashing schemes, describing the main requirements of theses algo-

rithms. Chapter 3 discusses the related work. Chapter 4 introduces Lyra2’s core

and its design rationale, while Chapter 5 analyzes its security. Chapter 6 presents

our benchmark results and comparisons with existing PHS. Finally, Chapter 7

encloses our concluding remarks, main results and plans for future work.

19

2 BACKGROUND

To allow a better comprehension of the concepts explored in this document,

it is necessary to clearly understand some basic concepts involved in the area

of Cryptography. This is the main goal of this chapter, which covers the basic

services provided by hash functions and how they can be implemented using the

concept of cryptographic sponges. In addition, it also summarizes the characteris-

tics, utilization and main security aspects of Password Hashing Schemes (PHS),

which are the focus of this research.

In what follows and throughout this document, we use the notation and

symbols shown on “List of Symbols” (page xii).

2.1 Hash-Functions

Let H be a function, we call H as Hash-Function if H : {0, 1}∗ 7→ {0, 1}h,

where h ∈ N (TERADA, 2008). In other words, a Hash-Function H is a one-way

and non-invertible transformation that maps an arbitrary-length input x to a

fixed h length output y = H(x), called the hash-value, or simply the hash, of x.

Therefore, the hash can be seen as a “digest” of x.

Hash-functions can be used to verify the integrity of a message x: since a

modification in x will result in a different hash, any user can verify that the

modified x does not map to H(x) (SIMPLICIO JR, 2010). In this case, the

integrity of H(x), must be ensured somehow, or attackers could replace x by x′

20

at the same time that they replace H(x) by H(x′), misleading the verification

process.

We note that there is also a more generic definition for hash functions without

the one-way requirement (MENEZES et al., 1996), but for the purposes of this

document such alternative is not considered because password hashing schemes,

which are the focus of the discussion, requires the a H that is not easily invertible.

2.1.1 Security

Since hash-functions are “many-to-one” functions, the existence of collisions

(pairs of inputs x and x′ that are mapped to the same output y = H(x)) is

unavoidable. Indeed, supposing that all input messages have a length of at most

t bits, that the outputs are h-bit long and that all 2h outputs are equiprobable,

then 2t−h inputs will map to each output, and two input picked at random will

yield to the same output with a probability of 2−h. To prevent attackers from

using this property to their advantage, secure hash algorithms must satisfy at

least the following three requirements:

• First Pre-image Resistance: given a hash y = H(x), it is computationally

infeasible to find any x having that hash-value, i.e., it is computationally

infeasible to “invert” the hash-function

• Second Pre-image Resistance: given x and its corresponding hash y = H(x),

it is computationally infeasible to “find any other input” x′ that maps to the

same hash, i.e., it is computationally infeasible find a x′ such that x′ 6= x

and y = H(x′) = H(x).

• Collision Resistance: it is computationally infeasible to “find any two dis-

tinct inputs” x and x′ that map to the same hash-value, i.e., it is computa-

tionally infeasible to find H(x) = H(x′) where x 6= x′.

21

2.2 Cryptographic Sponges

The concept of cryptographic sponges was formally introduced by Bertoni

et al. in (BERTONI et al., 2007) and is described in detail in (BERTONI et

al., 2011a). The elegant design of sponges has also motivated the creation of

more general structures, such as the Parazoa family of functions (ANDREEVA;

MENNINK; PRENEEL, 2011). Indeed, their flexibility is probably among the

reasons that led Keccak (BERTONI et al., 2011b), one of the members of the

sponge family, to be elected as the new Secure Hash Algorithm (SHA-3).

2.2.1 Basic Structure

In a nutshell, different to the hash functions, sponge functions provide an in-

teresting way of building hash functions with arbitrary input and output lengths.

Such functions are based on the so-called sponge construction, an iterated mode

of operation that uses a fixed-length permutation (or transformation) f and a

padding rule pad. More specifically, and as depicted in Figure 1, sponge functi-

ons rely on an internal state of w = b+ c bits, initially set to zero, and operate on

an (padded) input M cut into b-bit blocks. This is done by iteratively applying f

to the sponge’s internal state, operation interleaved with the entry of input bits

(during the absorbing phase) or the subsequent retrieval of output bits (during

Figure 1: Overview of the sponge construction Z = [f, pad, b](M, `). Adapted
from (BERTONI et al., 2011a).

22

the squeezing phase). The process stops when all input bits consumed in the

absorbing phase are mapped into the resulting `-bit output string. Typically, the

f transformation is itself iterative, being parameterized by a number of rounds

(e.g., 24 for Keccak operating with 64-bit words (BERTONI et al., 2011b)).

The sponge’s internal state is, thus, composed by two parts: the b-bit long

outer part, which interacts directly with the sponge’s input, and the c-bit long

inner part, which is only affected by the input by means of the f transformation.

The parameters w, b and c are called, respectively, the width, bitrate, and the

capacity of the sponge.

2.2.2 The duplex construction

A similar structure derived from the sponge concept is theDuplex construction

(BERTONI et al., 2011a), depicted in Figure 2.

Unlike regular sponges, which are stateless in between calls, a duplex function

is stateful: it takes a variable-length input string and provides a variable-length

output that depends on all inputs received so far. In other words, although the

internal state of a duplex function is filled with zeros upon initialization, it is

stored after each call to the duplex object rather than repeatedly reset. In this

case, the input string x must be short enough to fit in a single b-bit block after

padding, and the output length ` must satisfy ` 6 b.

Figure 2: Overview of the duplex construction. Adapted from (BERTONI et al.,
2011a).

23

2.2.3 Security

The fundamental attacks against cryptographic sponge functions which allow

it to be distinguished from a random oracle are called primary attacks (BERTONI

et al., 2011a). In order to be considered secure, a sponge function must resist to

such attacks, which implies that the following operations must be computationally

infeasible (BERTONI et al., 2011a):

• Finding a path (a sequence of bytes to be absorbed by the sponge) P leading

to a given internal state s.

• Finding two different paths leading to the same internal state s.

• Finding the internal state s for a given output Z.

2.3 Password Hashing Schemes (PHS)

As previously discussed, the basic requirement for a PHS is to be non-

invertible, so that recovering the password from its output is computationally

infeasible. Moreover, a good PHS’s output is expected to be indistinguishable

from random bit strings, preventing an attacker from discarding part of the pas-

sword space based on perceived patterns (KELSEY et al., 1998). In principle,

those requirements can be easily accomplished simply by using a secure hash

function, which by itself ensures that the best attack venue against the derived

key is through brute force (possibly aided by a dictionary or “usual” password

structures (NIST, 2011; WEIR et al., 2009)).

What any modern PHS do, then, is to include techniques that raise the cost

of brute-force attacks. A first strategy for accomplishing this is to take as input

not only the user-memorizable password pwd itself, but also a sequence of random

bits known as salt. The presence of such random variable thwarts several attacks

24

based on pre-built tables of common passwords, i.e., the attacker is forced to

create a new table from scratch for every different salt (KALISKI, 2000; KELSEY

et al., 1998). The salt can, thus, be seen as an index into a large set of possible

keys derived from pwd, and need not to be memorized or kept secret (KALISKI,

2000).

A second strategy is to purposely raise the cost of every password guess in

terms of computational resources, such as processing time and/or memory usage.

This certainly also raises the cost of authenticating a legitimate user entering

the correct password, meaning that the algorithm needs to be configured so that

the burden placed on the target platform is minimally noticeable by humans.

Therefore, the legitimate users and their platforms are ultimately what impose

an upper limit on how computationally expensive the PHS can be for themselves

and for attackers. For example, a human user running a single PHS instance is

unlikely to consider a nuisance that the password hashing process takes 1 s to

run and uses a small part of the machine’s free memory, e.g., 20 MB. On the

other hand, supposing that the password hashing process cannot be divided into

smaller parallelizable tasks, achieving a throughput of 1,000 passwords tested per

second requires 20 GB of memory and 1,000 processing units as powerful as that

of the legitimate user.

A third strategy, especially useful when the PHS involves both processing time

and memory usage, is to use a design with low parallelizability. The reasoning is

as follows. For an attacker with access to p processing cores, there is usually no

difference between assigning one password guess to each core or parallelizing a

single guess so it is processed p times faster: in both scenarios, the total password

guessing throughput is the same. However, a sequential design that involves

configurable memory usage imposes an interesting penalty to attackers who do

not have enough memory for running the p guesses in parallel. For example,

25

suppose that testing a guess involves m bytes of memory and the execution of n

instructions. Suppose also that the attacker’s device has 100m bytes of memory

and 1000 cores, and that each core executes n instructions per second. In this

scenario, up to 100 guesses can be tested per second against a strictly sequential

algorithm (one per core), the other 900 cores remaining idle because they have

no memory to run.

Aiming to provide a deeper understanding on the challenges faced by PHS

solutions, in what follows we discuss the main characteristics of platforms used

by attackers and then how existing solutions avoid those threats.

2.3.1 Attack platforms

The most dangerous threats faced by any PHS comes from platforms that

benefit from “economies of scale”, especially when cheap, massively parallel hard-

ware is available. The most prominent examples of such platforms are Graphics

Processing Units (GPUs) and custom hardware synthesized from FPGAs (DÜR-

MUTH; GÜNEYSU; KASPER, 2012).

2.3.1.1 Graphics Processing Units (GPUs)

Following the increasing demand for high-definition real-time rendering,

Graphics Processing Units (GPUs) have traditionally carried a large number of

processing cores, boosting its parallelization capability. Only more recently, howe-

ver, GPUs evolved from specific platforms into devices for universal computation

and started to give support to standardized languages that help harness their

computational power, such as CUDA (NVIDIA, 2014) and OpenCL (KHRONOS

GROUP, 2012)). As a result, they became more intensively employed for more

general purposes, including password cracking (DÜRMUTH; GÜNEYSU; KAS-

PER, 2012; SPRENGERS, 2011).

26

As modern GPUs include a few thousands processing cores in a single piece

of equipment, the task of executing multiple threads in parallel becomes simple

and cheap. They are, thus, ideal when the goal is to test multiple passwords inde-

pendently or to parallelize a PHS’s internal instructions. For example, NVidia’s

Tesla K20X, one of the top GPUs available, has a total of 2,688 processing cores

operating at 732 MHz, as well as 6 GB of shared DRAM with a bandwidth of

250 GB per second (NVIDIA, 2012). Its computational power can also be further

expanded by using the host machine’s resources (NVIDIA, 2014), although this is

also likely to limit the memory throughput. Supposing this GPU is used to attack

a PHS whose parametrization makes it run in 1 s and take less than 2.23 MB

of memory, it is easy to conceive an implementation that tests 2,688 passwords

per second. With a higher memory usage, however, this number is deemed to

drop due to the GPU’s memory limit of 6 GB. For example, if a sequential PHS

requires 20 MB of DRAM, the maximum number of cores that could be used

simultaneously becomes 300, only 11% of the total available.

2.3.1.2 Field Programmable Gate Arrays (FPGAs)

An FPGA is a collection of configurable logic blocks wired together and with

memory elements, forming a programmable and high-performance integrated cir-

cuit. In addition, as such devices are configured to perform a specific task, they

can be highly optimized for its purpose (e.g., using pipelining (DANDASS, 2008;

KAKAROUNTAS et al., 2006)). Hence, as long as enough resources (i.e., logic

gates and memory) are available in the underlying hardware, FPGAs potentially

yield a more cost-effective solution than what would be achieved with a general-

purpose CPU of similar cost (MARECHAL, 2008).

When compared to GPUs, FPGAs may also be advantageous due to the

latter’s considerably lower energy consumption (CHUNG et al., 2010; FOWERS

27

et al., 2012), which can be further reduced if its circuit is synthesized in the form

of custom logic hardware (ASIC) (CHUNG et al., 2010).

A recent example of password cracking using FPGAs is presented in (DÜR-

MUTH; GÜNEYSU; KASPER, 2012). Using a RIVYERA S3-5000 cluster (SCI-

ENGINES, 2013a) with 128 FPGAs against PBKDF2-SHA-512, the authors re-

ported a throughput of 356,352 passwords tested per second in an architecture

having 5,376 password processed in parallel. It is interesting to notice that one

of the reasons that made these results possible is the small memory usage of the

PBKDF2 algorithm, as most of the underlying SHA-2 processing is performed

using the device’s memory cache (much faster than DRAM) (DÜRMUTH; GÜ-

NEYSU; KASPER, 2012, Sec. 4.2). Against a PHS requiring 20 MB to run, for

example, the resulting throughput would presumably be much lower, especially

considering that the FPGAs employed can have up to 64 MB of DRAM (SCI-

ENGINES, 2013a) and, thus, up to three passwords can be processed in parallel

rather than 5,376.

Interestingly, a PHS that requires a similar memory usage would be trouble-

some even for state-of-the-art clusters, such as the newer RIVYERA V7-2000T

(SCIENGINES, 2013b). This powerful cluster carries up to four Xilinx Virtex-7

FPGAs and up to 128 GB of shared DRAM, in addition to the 20 GB available

in each FPGA (SCIENGINES, 2013b). Despite being much more powerful, in

principle it would still be unable to test more than 2,600 passwords in parallel

against a PHS that strictly requires 20 MB to run.

28

3 RELATED WORKS

Following the call for candidates made by the Password Hashing Competition

(PHC), several new Password Hashing Schemes have emerged in the last years.

To be more specific, 24 new schemes were proposed, two of which voluntarily gave

up the competition (PHC, 2013); later, out of the 22 remaining proposals, only 9

were selected for the final phase of the PHC (PHC, 2015c). In what follows, we

describe the main password hashing solutions available in the literature and also

give a brief overview of the PHC’s finalists that, like Lyra2, allow both memory

usage and processing time to be configured. For conciseness, however, we do not

cover all details of each PHC algorithm, but only the main characteristics that are

useful for the discussion. Nevertheless, we refer the interested reader to the PHC

official website (PHC, 2013) for details on each submission to the competition.

3.1 Pre-PHC Schemes

Arguably, the main password hashing solutions available in the literature be-

fore the start of PHC were (PHC, 2013): PBKDF2 (KALISKI, 2000), bcrypt

(PROVOS; MAZIÈRES, 1999), scrypt (PERCIVAL, 2009) and Lyra2’s predeces-

sor (simply called Lyra) (ALMEIDA et al., 2014). These schemes are described

in what follows.

29

3.1.1 PBKDF2

The Password-Based Key Derivation Function version 2 (PBKDF2) algorithm

(KALISKI, 2000) was originally proposed in 2000 as part of RSA Laboratories’

Public-Key Cryptography Standards series, namely PKCS#5. It is nowadays pre-

sent in several security tools, such as TrueCrypt (TRUECRYPT, 2012), Apple’s

iOS for encrypting user passwords (Apple, 2012) and Android operating system

for filesystem encryption, since version 3.0 (AOSP, 2012), and has been formally

analyzed in several circumstances (YAO; YIN, 2005; BELLARE; RISTENPART;

TESSARO, 2012).

Basically, PBKDF2 (see Algorithm 1) iteratively applies the underlying pseu-

dorandom function H to the concatenation of pwd and a variable Ui, i.e., it makes

Ui = H(pwd, Ui−1) for each iteration 1 6 i 6 T . The initial value U0 corresponds

to the concatenation of the user-provided salt and a variable l, where l corres-

ponds to the number of required output blocks. The l-th block of the k-long key

is then computed as Kl = U1 ⊕ U2 ⊕ . . .⊕ UT , where k is the desired key length.

PBKDF2 allows users to control its total running time by configuring the T

parameter. Since the password hahsing process is strictly sequential (one cannot

Algorithm 1 PBKDF2.
Input: pwd . The password
Input: salt . The salt
Input: T . The user-defined parameter
Output: K . The password-derived key
1: if k > (232 − 1) · h then
2: return Derived key too long.
3: end if
4: l← dk/he ; r ← k − (l − 1) · h
5: for i← 1 to l do
6: U [1]← PRF (pwd, salt ‖ INT (i)) . INT(i): 32-bit encoding of i
7: T [i]← U [1]
8: for j ← 2 to T do
9: U [j]← PRF (pwd, U [j − 1]) ; T [i]← T [i]⊕ U [j]
10: end for
11: if i = 1 then {K ← T [1]} else {K ← K ‖ T [i]} end if
12: end for
13: return K

30

compute Ui without first obtaining Ui−1), its internal structure is not paralleliza-

ble. However, as the amount of memory used by PBKDF2 is quite small, the cost

of implementing brute force attacks against it by means of multiple processing

units remains reasonably low.

3.1.2 Bcrypt

Another solution that allows users to configure the password hashing

processing time is bcrypt (PROVOS; MAZIÈRES, 1999). The scheme is based

on a customized version of the 64-bit cipher algorithm Blowfish (SCHNEIER,

1994), called EksBlowflish (“expensive key schedule blowfish”).

Algorithm 2 Bcrypt.
Input: pwd . The password
Input: salt . The salt
Input: T . The user-defined cost parameter
Output: K . The password-derived key
1: s← InitState() . Copies the digits of π into the sub-keys and S-boxes Si
2: s←ExpandKey(s, salt, pwd)
3: for i← 1 to 2T do
4: s←ExpandKey(s, 0, salt)
5: s←ExpandKey(s, 0, pwd)
6: end for
7: ctext← ”OrpheanBeholderScryDoubt”
8: for i← 1 to 64 do
9: ctext← BlowfishEncrypt(s, ctext)
10: end for
11: return T ‖ salt ‖ ctext
12: function ExpandKey(s, salt, pwd)
13: for i← 1 to 32 do
14: Pi ← Pi ⊕ pwd[32(i− 1) . . . 32i− 1]
15: end for
16: for i← 1 to 9 do
17: temp← BlowfishEncrypt(s, salt[64(i− 1) . . . 64i− 1])
18: P0+2(i−1) ← temp[0 . . . 31]

19: P1+2(i−1) ← temp[32 . . . 64]
20: end for
21: for i← 1 to 4 do
22: for j ← 1 to 128 do
23: temp← BlowfishEncrypt(s, salt[64(j − 1) . . . 64j − 1])
24: Si[2(j − 1)]← temp[0 . . . 31]
25: Si[1 + 2(j − 1)]← temp[32 . . . 63]
26: end for
27: end for
28: return s
29: end function

31

Both algorithms use the same encryption process, differing only on how they

compute their subkeys and S-boxes. Bcrypt consists in initializing EksBlowfish’s

subkeys and S-Boxes with the salt and password, using the so-called EksBlowfish-

Setup function, and then using EksBlowfish for iteratively encrypting a constant

string, 64 times.

EksBlowfishSetup starts by copying the first digits of the number π into the

subkeys and S-boxes Si (see Algorithm 2). Then, it updates the subkeys and S-

boxes by invoking ExpandKey(salt, pwd), for a 128-bit salt value. Basically, this

function (1) cyclically XORs the password with the current subkeys, and then (2)

iteratively blowfish-encrypts one of the halves of the salt, the resulting ciphertext

being XORed with the salt’s other half and also replacing the next two subkeys

(or S-Boxes, after all subkeys are replaced). For example, in the first iteration,

the first 64 bits of the salt are encrypted, and then the result is XORed with its

second half and replaces the first two subkeys; this new set of subkeys is used in

the subsequent encryption.

After all subkeys and S-Boxes are updated, bcrypt alternately calls

ExpandKey(0, salt) and then ExpandKey(0, pwd), for 2T iterations. The user-

defined parameter T determines, thus, the time spent on this subkey and S-Box

updating process, effectively controlling the algorithm’s total processing time.

Like PBKDF2, bcrypt allows users to parameterize only its total running

time, i.e., does not allow the users the amount of memory used by the algorithm,

In addition to this shortcoming, some of its characteristics can be considered

(small) disadvantages when compared with PBKDF2. First, bcrypt employs a

dedicated structure (EksBlowfish) rather than a conventional hash function, lea-

ding to the need of implementing a whole new cryptographic primitive and, thus,

raising the algorithm’s code size. Second, EksBlowfishSetup’s internal loop grows

exponentially with the T parameter, making it harder to fine-tune bcrypt’s total

32

execution time without a linearly growing external loop. Finally, bcrypt displays

the unusual (albeit minor) restriction of being unable to handle passwords having

more than 56 bytes. This latter issue is not a serious limitation, not only because

larger passwords are unlikely to be “human-memorizable”, but also because this

could be overcome by pre-hashing the password to the required 56 bytes before

the call to the bcrypt algorithm. Nonetheless, this does impairs the scheme’s

flexibility.

3.1.3 Scrypt

The design of scrypt (PERCIVAL, 2009) focus on coupling memory and time

costs. For this, scrypt employs the concept of “sequential memory-hard” functi-

ons: an algorithm that asymptotically uses almost as much memory as it requires

Algorithm 3 Scrypt.
Param: h . BlockMix ’s internal hash function output length
Input: pwd . The password
Input: salt . A random salt
Input: k . The key length
Input: b . The block size, satisfying b = 2r · h
Input: R . Cost parameter (memory usage and processing time)
Input: p . Parallelism parameter
Output: K . The password-derived key
1: (B0...Bp−1)←PBKDF2HMAC−SHA−256(pwd, salt, 1, p · b)
2: for i← 0 to p− 1 do
3: Bi ←ROMix(Bi, R)
4: end for
5: K ←PBKDF2HMAC−SHA−256(pwd,B0 ‖B1 ‖ ... ‖Bp−1, 1, k)
6: return K . Outputs the k-long key
7: function ROMix(B,R) . Sequential memory-hard function
8: X ← B
9: for i← 0 to R− 1 do . Initializes memory array M
10: Mi ← X ; X ←BlockMix(X)
11: end for
12: for i← 0 to R− 1 do . Reads random positions of M
13: j ← Integerify(X) mod R
14: X ←BlockMix(X ⊕Mj)
15: end for
16: return X
17: end function
18: function BlockMix(B) . b-long in/output hash function
19: Z ← B2r−1 . r = b/2h, where h = 512 for Salsa20/8
20: for i← 0 to 2r − 1 do
21: Z ← Hash(Z ⊕Bi) ; Yi ← Z
22: end for
23: return (Y0, Y2, ..., Y2r−2, Y1, Y3, Y2r−1)
24: end function

33

operations and for which a parallel implementation cannot asymptotically obtain

a significantly lower cost. Informally, this means that if the number of operations

and the amount of memory used in the regular operation of the algorithm are

both O(R), where R is a system parameter, then any attack trying to exploit

time-memory trade-offs (TMTO) should always lead to a Ω(R2) time-memory

product, limiting the attacker’s capability of using strategies for reducing the al-

gorithm’s total memory usage. For example, the complexity of a memory-free

attack – i.e., an attack for which the memory usage is reduced to O(1) – beco-

mes Ω(R2), which should compel attackers to use more memory. For conciseness,

we refer the reader to (PERCIVAL, 2009) for a more formal definition of the

memory-hardness concept.

The following steps compose scrypt’s operation (see Algorithm 3). First, it

initializes p b-long memory blocks Bi. This is done using the PBKDF2 algorithm

with HMAC-SHA-256 (NIST, 2002b) as underlying hash function and a single

iteration. Then, each Bi is processed (incrementally or in parallel) by the sequen-

tial memory-hard ROMix function. Basically, ROMix initializes an array M of

R b-long elements by iteratively hashing Bi. It then visits R positions of M at

random, updating the internal state variable X during this (strictly sequential)

process in order to ascertain that those positions are indeed available in memory.

The hash function employed by ROMix is called BlockMix , which emulates a

function having arbitrary (b-long) input and output lengths; this is done using the

Salsa20/8 (BERNSTEIN, 2008) stream cipher, whose output length is h = 512.

After the p ROMix processes are over, the Bi blocks are used as salt in one final

iteration of the PBKDF2 algorithm, outputting key K.

Scrypt displays a very interesting design, being one of the few existing so-

lutions that allow the configuration of both processing and memory costs. One

of its main shortcomings is probably the fact that it strongly couples memory

34

and processing requirements for a legitimate user. Specifically, scrypt’s design

prevents users from raising the algorithm’s processing time while maintaining a

fixed amount of memory usage, unless they are willing to raise the p parameter

and allow further parallelism to be exploited by attackers.

Another inconvenience with scrypt is the fact that it employs two different

underlying hash functions, HMAC-SHA-256 (for the PBKDF2 algorithm) and

Salsa20/8 (as the core of the BlockMix function), leading to increased implemen-

tation complexity.

Finally, even though Salsa20/8’s known vulnerabilities (AUMASSON et al.,

2008) are not expected to put the security of scrypt in hazard (PERCIVAL, 2009),

using a stronger alternative would be at least advisable, especially considering

that the scheme’s structure does not impose serious restrictions on the internal

hash algorithm used by BlockMix . In this case, a sponge function could itself

be an alternative, with the advantage that, since sponges support inputs and

outputs of any length, the whole BlockMix structure could be replaced. However,

sponges’ intrinsic properties make some of scrypt’s operations unnecessary: for

example, since sponges support inputs and outputs of any length, the whole

BlockMix structure could be replaced.

3.1.4 Lyra

Inspired by scrypt’s design, Lyra (ALMEIDA et al., 2014) builds on the pro-

perties of sponges to provide not only a simpler, but also more secure solution.

Indeed, Lyra2 stays on the “strong” side of the memory-hardness concept: the

processing cost of attacks involving less memory than specified by the algorithm

grows much faster than quadratically, surpassing the best achievable with scrypt

and thwarting the exploitation of time-memory trade-offs (TMTO). This charac-

teristic should discourage attackers from trading memory usage for processing

35

time, which is exactly the goal of a PHS in which usage of both resources are

configurable.

Lyra’s steps as described in (ALMEIDA et al., 2014) are detailed in Algorithm

4. Basically, Lyra builds upon (reduced-round) operations of a cryptographic

sponge for (1) building a memory matrix, (2) visiting its rows in a pseudorandom

fashion, as many times as defined by the user, and then (3) providing the desired

number of bits as output. More precisely, the first part of the algorithm, called

the Setup Phase (lines 1 – 8), comprises the construction of a R × C memory

matrix whose cells are b-long blocks, where R and C are user-defined parameters

and b is the underlying sponge’s bitrate (in bits). Without resetting the sponge’s

internal state, the algorithm enters then the Wandering Phase (lines 9 – 19), in

which (T ·R) rows are visited in a pseudorandom fashion, aiming to ensure that

the whole memory matrix is still available in memory. Every row visited in this

manner has all of its cells read and combined with the output of the underlying

sponge’s (reduced) duplexing operation Hash.duplexingρ (line 14). Finally, in

the Wrap-up Phase (lines 20 – 22), the final key is computed by first absorbing

the salt one last time and then squeezing the (full-round) sponge, once again

using its current internal state. The stateful, full-round sponge employed in this

last stage ensures that the whole process is both non-invertible and of sequential

nature.

While Lyra2 also builds upon reduced-round sponges for achieving high per-

formance, it also addresses some shortcomings of Lyra’s design. First, Lyra’s

Setup is quite simple, each iteration of its loop (lines 8 to 4) duplexing only

the row that was computed in the previous iteration. As a result, the Setup

can be executed with a cost of R · σ while keeping in memory a single row of

the memory matrix. Second, Lyra’s duplexing operations performed during the

Wandering phase involve only one pseudorandomly-picked row, which is read and

36

Algorithm 4 The Lyra Algorithm.
Param: Hash . Sponge with block size b and underlying perm. f
Param: ρ . Number of rounds of f in the Setup and Wandering phases
Input: pwd . The password
Input: salt . A random salt
Input: T . Time cost, in number of iterations
Input: R . Number of rows in the memory matrix
Input: C . Number of columns in the memory matrix
Input: k . The desired key length, in bits
Output: K . The password-derived k-long key
1: . Setup: Initializes a (R× C) memory matrix
2: Hash.absorb(pad(salt ‖ pwd)) . Padding rule: 10∗1
3: M [0]← Hash.squeezeρ(C · b)
4: for row ← 1 to R− 1 do
5: for col← 0 to C − 1 do
6: M [row][col]← Hash.duplexingρ(M [row − 1][col], b)
7: end for
8: end for
9: . Wandering: Iteratively overwrites blocks of the memory matrix
10: row ← 0
11: for i← 0 to T − 1 do . Time Loop
12: for j ← 0 to R− 1 do . Rows Loop: randomly visits R rows
13: for col← 0 to C − 1 do . Columns Loop
14: M [row][col]←M [row][col]⊕Hash.duplexingρ(M [row][col], b)
15: end for
16: col←M [row][C − 1] mod C
17: row ← Hash.duplexing(M [row][col], |R|) mod R
18: end for
19: end for
20: . Wrap-up: key computation
21: Hash.absorb(pad(salt)) . Uses the sponge’s current state
22: K ← Hash.squeeze(k)

23: return K . Outputs the k-long key

written upon. As it turns out, one can add extra rows to this process with little

impact on performance on modern platforms, as existing memory devices have

enough bandwidth to support a higher number of memory reads/writes. Raising

the amount of memory accesses also have positive results on security, for two

reasons: (1) if an attacker tries to trade memory usage for extra processing, a

potentially larger number of rows will have to be recomputed for performing each

duplexing operation; and (2) attackers trying to run multiple instances of the pas-

sword hashing algorithm (or recomputations in an attack exploiting time-memory

trade-offs) will need to account for such increased bandwidth usage. Lyra2’s de-

sign addresses both of these issues, besides introducing a few other improvements

(e.g., resistance to side-channel attacks).

37

3.2 Schemes from PHC

The Password Hashing Competition (PHC) was created aiming to evaluate

novel PHS designs and ideas in terms of security, performance and flexibility

(PHC, 2013). In its first round, 22 candidates were submited to the competition:

AntCrypt, Argon, battcrypt, Catena, Centrifuge, EARWORM, Gambit, Lanarea,

Lyra2, Makwa, MCS_PHS, Omega Crypt, Parallel, PolyPassHash, POMELO,

Pufferfish, RIG, Schvrch, Tortuga, TwoCats, Yarn and yescrypt. Beside these,

two other schemes (Catfish and M3lcrypt) were submitted, but withdrawn before

the initial evaluation process.

After the first round evaluation, 9 finalists were announced as potential win-

ners of the competition, 6 of which are memory-hard algorithms (PHC, 2015c):

Argon, battcrypt, Catena, POMELO, yescrypt and Lyra2. This selection was

based on many criteria (PHC, 2015c): defense against GPU/FPGA/ASIC attac-

kers; defense against time-memory trade-offs; defense against side-channel leaks;

defense against cryptanalytic attacks; elegance and simplicity of design; quality

of the documentation; quality of the reference implementation; general soundness

and simplicity of the algorithm; and originality and innovation. These criteria

have no particular order, and the panel also took into account some specific ap-

plications like web-service authentication, client login, key derivation, or usage in

embedded devices, presented by some candidates.

In the specific case of Lyra2, the algorithm was announced as a finalist due to

its elegant sponge-based design, with a single external primitive, and its detailed

security analysis (PHC, 2015c). At the end of the competition, this property,

together with the adopted approach to side-channel resistance that also takes

into account slow-memory attacks, led to a “special recognition” for Lyra2 (PHC,

2015b). In this occasion, Argon2 (which was not among the original candidates,

38

but was accepted in the second round as a “new candidate” nevertheless) was

announced as the PHC winner, and other three candidates received a special

recognition; namely: Catena, for its agile framework approach and side-channel

resistance; Makwa, for its unique delegation feature and its factoring-based se-

curity; and yescrypt, for its rich feature set and easy upgrade path from scrypt

(PHC, 2015b).

In what follows, we briefly describe the other memory-hard finalists. For con-

ciseness, however we do not analyze every detail of the algorithms, but only the

main aspects that allow the reader to grasp the reason behind the numbers ob-

tained in the comparative performance assessment presented later in Section 6.1.

3.2.1 Argon2

The Argon2 scheme was announced as an evolution of its predecessor, Argon.

Although these algorithms have nothing in common, the PHC panel decided to

accept Argon2 in the last phase of the competition after internal discussions and

consultation to the other teams participating in the PHC, including the Lyra2

team (SIMPLICIO JR, 2015).

Contrasting with all other finalists, Argon2 displays more than one mode of

operation which means that it works in a distinct way depending on its para-

meters. Namely, Argon2d’s memory access pattern depends on the user’s pas-

sword, while Argon2i adopts a password-independent memory access (BIRYU-

KOV; DINU; KHOVRATOVICH, 2016); as a result, Argon2i displays high re-

sistance against side-channel attacks, while Argon2d focus on resistance against

slow-memory attacks. Besides these two operation modes, the authors also pro-

vide a hybrid operation in its official repository, called Argon2id (PHC, 2015a),

which was designed after the end of the PHC as a recommended tweak for the

algorithm. This mode combines a password-independent memory access pattern

39

when it fills the memory at the beginning of the algorithm’s execution, and then

revisits the memory in a password-dependent manner in the remainder of the

process, which is actually very similarly to what is done in Lyra2. Although the

multiple modes of operation may actually be confusing to users, since even spe-

cialists not always agree on how much side-channel vs. slow-memory resistance

is necessary in a given practical scenario, this approach leads to a quite flexible

design.

Another characteristic of the Argon2 scheme that shows that Lyra2 contri-

buted to its final design is that it adopts as underlying cryptographic function

the BlaMka multiplication-hardened sponge (BIRYUKOV; DINU; KHOVRATO-

VICH, 2016, Appendix A), which is actually one of the original results of this

thesis, presented in Section 4.4.1

Like and Lyra2 (and also Lyra), Argon2 was designed to thwart attacks in-

volving Time-Memory trade-offs (TMTO), imposing large processing penalties

to attackers who try to run the algorithm with less memory than a legitimate

user. According to the security analysis presented by Argon2’s authors, for a

memory reduction of approximately 1/6, the penalty should be approximately

(279601 · T ·R) /6 ≈ 215.5 ·T ·R for Argon2i and (4753217 · T ·R) /6 ≈ 219.6 ·T ·R

for Argon2d – where T is the algorithm’s time parameter and R is its memory

parameter – (BIRYUKOV; DINU; KHOVRATOVICH, 2016).

Argon2 can also be configured to use any amount of memory (e.g., it does not

impose that the memory sizes must be a power of two, a limitation that appears

in some other candidates). Nonetheless, the memory parameter should be larger

than 8p and multiple of 4p, where p is its degree of parallelism.

40

3.2.2 battcrypt

Battcrypt (Blowfish All The Things [crypt]) is a simplified scrypt and targets

server-side application (THOMAS, 2014). Internally, it uses the Blowfish block

cipher (SCHNEIER, 1994) in the CBC mode of operation (NIST, 2001b), as well

as the hash function SHA-512 (NIST, 2002a). According to Battcrypt’s authors,

Blowfish is used because it is well-studied and included in PHP implementations

(THOMAS, 2014).

Despite its simple design, Battcrypt does not have an in-depth security analy-

sis. Namely, Battcrypt’s authors provide only a discussion on the scheme’s secu-

rity in terms of the underlying Blowfish primitive, concluding that, if the latter is

broken, the same applies to battcrypt too. There is, however, no security analy-

sis concerning its resistance to TMTO attacks, besides the complete absence of

mechanisms for protecting the algorithm against side-channel attacks.

Another shortcoming of Battcrypt is that its memory usage cannot be easily

fine-tuned, as its running time depends on the time parameter T using a quite

convoluted equation, namely 2bT/2c·((T mod 2)+2) (THOMAS, 2014).

3.2.3 Catena

Catena was designed with an specific goal in mind: provide a memory-hard

PHS with high resistance against side-channel attacks. To accomplish this goal,

the algorithm avoids any password-dependent code branching, meaning that the

order in which its internal memory is initialized and visited is completely deter-

ministic, instead of pseudo-random. Specifically, this protects Catena against the

so-called cache-timing attacks, in which the access to cache memory is monitored

and used in the recovery of secret information (FORLER; LUCKS; WENZEL,

2013; BERNSTEIN, 2005).

41

On the positive side, Catena displays a quite simple and elegant design, which

makes it easy to understand and implement. Its authors also provide a quite com-

plete security analysis, relying on the fact that Catena’s structure is based on a

special type of graph called “Bit-Reversal Graph” (LENGAUER; TARJAN, 1982).

This particular graph type allows the security of Catena to be formally demons-

trated (at least in part) using the pebble-game theory (COOK, 1973; DWORK;

NAOR; WEE, 2005), allowing time-memory trade-offs (TMTO) against the al-

gorithm to be tightly calculated. Specifically, according to Catena’s analysis in

(FORLER; LUCKS; WENZEL, 2013; FORLER; LUCKS; WENZEL, 2014)1: the

complexity of a memory-free attack against Catena is conjectured to be Θ(RT+1);

in attacks where the attacker choose the amount of memory to be used, the com-

plexity is conjectured as Θ(RT+1/MT), where R denotes the total memory used

by legitimate users and M the memory used by the attacker.

On the negative side, Catena does not allow a flexible choice of parameters,

as the memory size must always be a power of two. In addition, the algorithm as

originally presented to the PHC was quite slow, although in its last version it also

allows the usage of a reduced-round sponge as proposed in Lyra (a feature also

incorporated in Lyra2). Finally, and as further discussed in Section 5.3, providing

full resistance against cache-timing attacks facilitates other types of attacks that

can benefit from a purely deterministic memory visitation pattern. Therefore,

by focusing on one (not necessarily most probable) attack venue, Catena ends

up failing to provide a compromise between the different attack strategies at the

disposal of password crackers.

Despite these shortcomings, Catena has the merit of bringing several interes-

ting ideas concerning the usage of a PHS. Probably the most useful one is the

concept of “server relief protocol”, which allows a remote authentication server
1Note: to standardize the notation hereby employed, here we interpret Catena’s garlic as R

and its depth as T

42

to offload (most of) the computational effort involved in the password hashing

process to the client (FORLER; LUCKS; WENZEL, 2014), leading to a more

scalable authentication system. Another interesting idea is the concept of client-

independent update, a feature that allows the defender to increase the PHS’s

security parameters at any time, even for inactive accounts (FORLER; LUCKS;

WENZEL, 2014), by re-hashing values already stored at the server’s database.

We note, however, that while these features are very relevant and described in

detail for Catena, they can also be easily incorporated into any PHS (FORLER;

LUCKS; WENZEL, 2013).

3.2.4 POMELO

POMELO has a quite simple design and, thus, is easy to implement (WU,

2015). Interestingly, this PHS does not adopt any existing cryptographic function

as underlying primitive, but operates on 8-byte words and uses three state update

functions developed specifically for this scheme. The first function is a simple non-

linear feedback function and the other two provide simple random memory access

over data (HATZIVASILIS; PAPAEFSTATHIOU; MANIFAVAS, 2015).

According to POMELO’s author, these tree functions protect POMELO

against pre-image attacks (i.e., attempts to invert the hash for obtaining the

password) and also TMTO attempts (WU, 2015). In addition, and similarly to

what is done in Lyra2, POMELO’s design is such that it provides a compro-

mise between resistance against cache-timing attacks and to other attacks that

might take advantage of purely deterministic memory visitation patterns. We

note, however, that even though the scheme’s authors provide a quite complete

security analysis in its specification manual, the underlying POMELO functions

have been target of criticism for not having a formal proof of their security (PHC,

2015d).

43

Besides these potential doubts on the security of its primitives, POMELO

also has one unusual security claim: protection against what the authors call

“SIMD attacks”, i.e., attacks that take advantage of SIMD instructions in mo-

dern platforms. Since most computer platforms do have support to SIMD, this is

rather a limitation for legitimate users, who cannot take full advantage of availa-

ble commodity hardware, than for attackers, who can build their own hardware

platforms with whichever optimization they might find. In addition, while the

authors claim that POMELO is resistant to GPU and dedicated hardware at-

tacks (WU, 2015). Finally, POMELO’s design makes it difficult to fine tune its

memory usage and processing time, as both grow exponentially with its T and R

parameters.

3.2.5 yescrypt

The yescrypt scheme is strongly based on scrypt and, as the latter, allows

legitimate users to adjust its memory and time costs to desired levels, using the

R and T parameters. However, and unlike most PHC candidates, it provides

a wide range of parameters besides R and T , including the ability to indicate:

whether it should be only read from memory after initializing it; if it should

read from an additional, read-only memory device in addition to its internal

memory; if it should operate in a scrypt-compatible mode; among many others.

Furthermore, yescrypt uses many cryptographic primitives in its design, namely:

SHA-256 (NIST, 2002a), HMAC (NIST, 2002b), Salsa20/8 (BERNSTEIN, 2008),

and PBKDF2 (KALISKI, 2000) itself This adds a lot of complexity to yescrypt’s

design, making it very hard to understand and, thus, analyze.

Indeed, its authors do not provide an in-depth security analysis about the

algorithm, but rather high level claims about how its design strategies should

thwart TMTO attempts as well as attacks using GPUs and dedicated hardware.

44

The algorithm also has no mechanisms from protecting against side channel at-

tacks, as all memory visitations are password-dependent, and does not allow the

memory usage to be fine tunned, as the scheme requires its R parameter to be a

power of two (PESLYAK, 2015).

Despite its complexity, probably one of the main contributions of yescrypt’s

design is the introduction of the “multiplication-hardening” concept (COX, 2014;

PESLYAK, 2015), which translates to the adoption of integer multiplications

among the PHS’s internal operations as a way to protect against attacks based on

dedicated hardware. The reason is that, as verified in several benchmarks availa-

ble in the literature (SHAND; BERTIN; VUILLEMIN, 1990; SODERQUIST; LE-

ESER, 1995), the performance gain offered by hardware implementations of the

multiplication operation is not much higher than what is obtained with software

implementations running on commodity x86 platforms, for which such operati-

ons are already heavily optimized. Those optimizations appear in different levels,

including compilers, advanced instruction sets (e.g., MMX, SSE and AVX), and

architectural details of modern CPUs that resemble those of dedicated FPGAs.

With these observations in mind, yescrypt iteratively performs several multipli-

cations for each memory position it visits, and then mixes the result using one

round of Salsa20/8.

45

4 LYRA2

As any PHS, Lyra2 takes as input a salt and a password, creating a pseudo-

random output that can then be used as key material for cryptographic algorithms

or as an authentication string (NIST, 2009). Internally, the scheme’s memory is

organized as a matrix that is expected to remain in memory during the whole

password hashing process: since its cells are iteratively read and written, discar-

ding a cell for saving memory leads to the need of recomputing it whenever it is

accessed once again, until the point it was last modified. The construction and

visitation of the matrix is done using a stateful combination of the absorbing,

squeezing and duplexing operations of the underlying sponge (i.e., its internal

state is never reset to zero), ensuring the sequential nature of the whole process.

Also, the number of times the matrix’s cells are revisited after initialization is

defined by the user, allowing Lyra2’s execution time to be fine-tuned according

to the target platform’s resources.

In this chapter, we describe the core of the Lyra2 algorithm in detail and

discuss its design rationale and resulting properties. Later, in Appendix B, we

discuss a possible variant of the algorithm that may be useful in a different sce-

nario.

46

Algorithm 5 The Lyra2 Algorithm.
Param: H . Sponge with block size b (in bits) and underlying permutation f
Param: Hρ . Reduced-round sponge for use in the Setup and Wandering phases
Param: ω . Number of bits to be used in rotations (recommended: a multiple of W)
Input: pwd . The password
Input: salt . A salt
Input: T . Time cost, in number of iterations (T > 1)
Input: R . Number of rows in the memory matrix
Input: C . Number of columns in the memory matrix (recommended: C · ρ > ρmax)
Input: k . The desired hashing output length, in bits
Output: K . The password-derived k-long hash
1: . Bootstrapping phase: Initializes the sponge’s state and local variables
2: . Byte representation of input parameters (others can be added)
3: params← len(k) ‖ len(pwd) ‖ len(salt) ‖T ‖R ‖C
4: H.absorb(pad(pwd ‖ salt ‖ params)) . Padding rule: 10∗1.
5: gap← 1 ; stp← 1 ; wnd← 2 ; sqrt← 2 . Initializes visitation step and window
6: prev0 ← 2 ; row1 ← 1 ; prev1 ← 0

7: . Setup phase: Initializes a (R× C) memory matrix, it’s cells having b bits each
8: for (col←0 to C−1) do {M [0][C−1−col]← Hρ.squeeze(b)} end for
9: for (col←0 to C−1) do {M [1][C−1−col]←M [0][col]⊕Hρ.duplex(M [0][col], b)} end for
10: for (col←0 to C−1) do {M [2][C−1−col]←M [1][col]⊕Hρ.duplex(M [1][col], b)} end for
11: for (row0 ← 3 to R− 1) do . Filling Loop: initializes remainder rows
12: . Columns Loop: M [row0] is initialized; M [row1] is updated
13: for (col← 0 to C − 1) do
14: rand← Hρ.duplex(M [row1][col]�M [prev0][col]�M [prev1][col], b)

15: M [row0][C − 1− col]←M [prev0][col]⊕ rand
16: M [row1][col]←M [row1][col]⊕ rot(rand) . rot(): right rotation by ω bits
17: end for
18: prev0 ← row0 ; prev1 ← row1 ; row1 ← (row1 + stp) mod wnd

19: if (row1 = 0) then .Window fully revisited
20: . Doubles window and adjusts step
21: wnd← 2 · wnd ; stp← sqrt+ gap ; gap← −gap
22: if (gap = −1) then {sqrt← 2 · sqrt} end if . Doubles sqrt every other iteration
23: end if
24: end for
25: . Wandering phase: Iteratively overwrites pseudorandom cells of the memory matrix
26: . Visitation Loop: 2R · T rows revisited in pseudorandom fashion
27: for (wCount← 0 to R · T − 1) do
28: row0 ← lsw(rand) mod R ; row1 ← lsw(rot(rand)) mod R . Picks pseudorandom rows
29: for (col← 0 to C − 1) do . Columns Loop: updates M [row0,1]
30: . Picks pseudorandom columns
31: col0 ← lsw(rot2(rand)) mod C ; col1 ← lsw(rot3(rand)) mod C

32: rand← Hρ.duplex(M [row0][col]�M [row1][col]�M [prev0][col0]�M [prev1][col1], b)

33: M [row0][col]←M [row0][col]⊕ rand . Updates first pseudorandom row
34: M [row1][col]←M [row1][col]⊕ rot(rand) . Updates second pseudorandom row
35: end for . End of Columns Loop
36: prev0 ← row0 ; prev1 ← row1 . Next iteration revisits most recently updated rows
37: end for . End of Visitation Loop
38: . Wrap-up phase: output computation
39: H.absorb(M [row0][0]) . Absorbs a final column with full-round sponge
40: K ← H.squeeze(k) . Squeezes k bits with full-round sponge
41: return K . Provides k-long bitstring as output

47

4.1 Structure and rationale

Lyra2’s steps are shown in Algorithm 5. As highlighted in the pseudocode’s

comments, its operation is composed by four sequential phases: Bootstrapping,

Setup, Wandering and Wrap-up. Along the description, we assume that all ope-

rations are done using little-endian convention; they should, thus, be adapted

accordingly for big-endian architectures (this applies basically to the rot opera-

tion).

4.1.1 Bootstrapping

The very first part of Lyra2 comprises the Bootstrapping of the algorithm’s

sponge and internal variables (lines 1 to 6). The set of variables {gap, stp, wnd,

sqrt, prev0, row1, prev1} initialized in lines 5 and 6 are useful only for the next

stage of the algorithm, the Setup phase, so the discussion on their properties is

left to Section 4.1.2.

Lyra2’s sponge is initialized by absorbing the (properly padded) password

and salt, together with a params bitstring, initializing a salt- and pwd-dependent

state (line 4). The padding rule adopted by Lyra2 is the multi-rate padding pad10∗1

described in (BERTONI et al., 2011a), hereby denoted simply pad. This padding

strategy appends a single bit 1 followed by as many bits 0 as necessary followed

by a single bit 1, so that at least 2 bits are appended. Since the password itself is

not used in any other part of the algorithm, it can be discarded (e.g., overwritten

with zeros) after this point.

In this first absorb operation, the goal of the params bitstring is basically to

avoid collisions using trivial combinations of salts and passwords: for example,

for any (u, v | u+ v = α), we have a collision if pwd =0u, salt = 0v and params

is an empty string; however, this should not occur if params explicitly includes

48

u and v. Therefore, params can be seen as an “extension” of the salt, including

any amount of additional information, such as: the list of parameters passed

to the PHS (including the lengths of the salt, password, and output); a user

identification string; a domain name toward which the user is authenticating

him/herself (useful in remote authentication scenarios); among others.

4.1.2 The Setup phase

Once the internal state of the sponge is initialized, Lyra2 enters the Setup

Phase (lines 7 to 24). This phase comprises the construction of a R×C memory

matrix whose cells are b-long blocks, where R and C are user-defined parameters

and b is the underlying sponge’s bitrate (in bits).

For better performance when dealing with a potentially large memory matrix,

the Setup relies on a “reduced-round sponge”, i.e., the sponge’s operation are done

with a reduced-round version of f , denoted fρ for indicating that ρ rounds are

executed rather than the regular number of rounds ρmax. The advantage of using

a reduced-round f is that this approach accelerates the sponge’s operations and,

thus, it allows more memory positions to be covered than with the application of a

full-round f in a same amount of time. The adoption of reduced-round primitives

in the core of cryptographic constructions is not unheard in the literature, as it

is the main idea behind the Alred family of message authentication algorithms

(DAEMEN; RIJMEN, 2005; DAEMEN; RIJMEN, 2010; SIMPLICIO JR et al.,

2009; SIMPLICIO JR; BARRETO, 2012). As further discussed in Section 4.2,

even though the requirements in the context of password hashing are different,

this strategy does not decrease the security of the scheme as long as fρ is non-cyclic

and highly non-linear, which should be the case for the vast majority of secure

hash functions. In some scenarios, it may even be interesting to use a different

function as fρ rather than a reduced-round version of f itself to attain higher

49

speeds, which is possible as long the alternative satisfies the above-mentioned

properties.

Except for rows M [0] to M [2], the sponge’s reduced duplexing operation

Hρ.duplex is always called over the wordwise addition of three rows (line 14),

all of which must be available in memory for the algorithm to proceed (see the

Filling Loop, in lines 11–24).

• M [prev0]: the last row ever initialized in any iteration of the Filling Loop,

which means simply that prev0 = row0 − 1;

• M [row1]: a row that has been previously initialized and is now revisited;

and

• M [prev1]: the last row ever revisited (i.e., the most recently row indexed

by row1).

Given the short time between the computation and usage of M [prev0] and

M [prev1], accessing them in a regular execution of Lyra2 should not be a huge

burden since both are likely to remain in cache. The same convenience does

not apply to M [row1], though, since it is picked from a window comprising rows

initialized prior to M [prev0]. Therefore, this design takes advantage of caching

while penalizing attacks in which a given M [row0] is directly recomputed from

the corresponding inputs: in this case, M [prev0] and M [prev1] may not be in

cache, so all three rows must come from the main memory, raising memory la-

tency and bandwidth. A similar effect could be achieved if the rows provided

as the sponge’s input were concatenated, but adding them together instead is

advantageous because then the duplexing operation involves a single call to the

underlying (reduced-round) f rather than three.

After the reduced duplexing operation is performed, the resulting output

(rand) affects two rows (lines 15 and 16): M [row0], which has not been initialized

50

yet, receives the values of rand XORed withM [prev0]; meanwhile, the columns of

the already initialized rowM [row1] have their values updated after being XORed

with rot(rand), i.e., rand rotated to the right by ω bits. More formally, for ω = W

and representing rand as an array of words rand[0] . . . rand[b/W − 1] (i.e., the

first b bits of the outer state, from top to bottom as depicted in Figures 1 and

2), we have that M [row0][C − 1 − i] ← M [prev0][i] ⊕ rand[i] and M [row1][i] ←

M [row1][i] ⊕ rand[(i − 1) mod (b/W)] (0 6 i 6 b/W − 1). We notice that

the rows are written from the highest to the lowest index, although read in the

inverse order, which thwarts attacks in which previous rows are discarded for

saving memory and then recomputed right before they are used. In addition,

thanks to the rot operation, each row receives slightly different outputs from the

sponge, which reduces an attacker’s ability to get useful results from XORing

pairs of rows together. Notice that this rotation can be performed basically for

free in software if ω is set to a multiple of W as recommended: in this case, this

operation corresponds to rearranging words rather than actually executing shifts

or rotations. The left side of Figure 3 illustrates how the sponge’s inputs and

output are handled by Lyra2 during the Setup phase.

The initialization of M [0] − M [2] in lines 8 to 10, in contrast, is slightly

different because none of them has enough predecessors to be treated exactly like

the rows initialized during the Filling Loop. Specifically, instead of taking three

Figure 3: Handling the sponge’s inputs and outputs during the Setup (left) and
Wandering (right) phases in Lyra2.

51

rows in the duplexing operation, M [0] takes none while M [1] and (for simplicity)

M [2] take only their immediate predecessor.

The Setup phase ends when all R rows of the memory matrix are initialized,

which also means that any row ever indexed by row1 has also been updated since

its initialization. These row1 indices are deterministically picked from a window

of size wnd, which starts with a single row and doubles in size whenever all of

its rows are visited (i.e., whenever row1 reaches the value 0). The exact values

assumed by row1 depend on wnd, following a logic whose aim is to ensure that,

if two rows are visited sequentially in one window, during the subsequent window

they are visited (1) in points far away from each other and (2) approximately

in the reverse order of their previous visitation. This hinders the recomputation

of several values of M [row1] from scratch in the sequence they are required,

thwarting attacks that trade memory and processing costs, which are discussed

in detail in Section 5.1. To accomplish this goal in a manner that is simple to

implement, the following strategy was adopted (see Table 1):

• When wnd is a square number: the window can be seen as a
√
wnd×

√
wnd

matrix. Then, row1 is taken from the indices in that matrix’s cyclic diago-

nals, starting with the main diagonal and moving right until the diagonal

from the upper right corner is reached. This is accomplished by using a

step variable stp =
√
wnd + 1, computed in line 21 of Algorithm 5, using

the auxiliary sqrt =
√
wnd variable to facilitate this computation.

• Otherwise: the window is represented as a 2
√
wnd/2 ×

√
wnd/2 matrix.

The values of row1 start with 0 and then corresponding to the matrix’s

cyclic anti-diagonals, starting with the main anti-diagonal and cyclically

moving left one column at a time. In this case, the step variable is

computed as stp = 2
√
wnd/2− 1 in the same line 21 of Algorithm 5, once

again using the auxiliary sqrt = 2
√
wnd/2 variable.

52

[
0
$$
2

1 3

] 
0 4

1

::
5

2 6

3

::
7




0
$$
4 8 C

1 5
$$
9 D

2 6 A
%%
E

3 7 B F


︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

row0 0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B . . .

prev0 – 0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A . . .

row1 – – – 1 0 3 2 1 0 3 6 1 4 7 2 5 0 5 A F 4 9 E 3 8 D 2 7 . . .

prev1 – – – 0 1 0 3 2 1 0 3 6 1 4 7 2 5 0 5 A F 4 9 E 3 8 D 2 . . .

wnd – – – 2 2 4 4 4 4 8 8 8 8 8 8 8 8 10 10 10 10 10 10 10 10 10 10 10 . . .

Table 1: Indices of the rows that feed the sponge when computingM [row] during
Setup (hexadecimal notation).

Table 1 shows some examples of the values of row1 in each iteration of the

Filling Loop (lines 11–24), as well as the corresponding window size. We note

that, since the window size is always a power of 2, the modular operation in line

18 can be implemented with a simple bitwise AND with wnd − 1, potentially

leading to better performance.

4.1.3 The Wandering phase

The most time-consuming of all phases, the Wandering Phase (lines 27 to

37), takes place after the Setup phase is finished, without resetting the sponge’s

internal state. Similarly to the Setup, the core of the Wandering phase consists

in the reduced duplexing of rows that are added together (line 32) for computing

a random-like output rand (line 32), which is then XORed with rows taken as

input. One distinct aspect of the Wandering phase, however, refers to the way

it handles the sponge’s inputs and outputs, which is illustrated in the right side

of Figure 3. Namely, besides taking four rows rather than three as input for the

sponge, these rows are not all deterministically picked anymore, but all involve

some kind of pseudorandom, password-dependent variable in their picking and

visitation:

53

• rowd (d = 0, 1): indices computed in line 28 from the first and second

words of the sponge’s outer state, i.e., from rand[0] and rand[1] for d = 0

and d = 1, respectively. This particular computation ensures that each

rowd index corresponds to a pseudorandom value ∈ [0, R− 1] that is only

learned after all columns of the previously visited row are duplexed. Given

the wide range of possibilities, those rows are unlike to be in cache; however,

since they are visited sequentially, their columns can be prefetched by the

processor to speed-up their processing.

• prevd (d = 0, 1): set in line 36 to the indices of the most recently modi-

fied rows. Just like in the Setup phase, these rows are likely to still be in

cache. Taking advantage of this fact, the visitation of its columns are not se-

quential but actually controlled by the pseudorandom, password-dependent

variables (col0, col1) ∈ [0, C − 1]. More precisely, each index cold (d = 0, 1)

is computed from the sponge’s outer state; for example, for ω = W , it is

taken from rand[d+ 2]) right before each duplexing operation (line 31). As

a result, the corresponding column indices cannot be determined prior to

each duplexing, forcing all the columns to remain in memory for the whole

duplexing operation for better performance and thwarting the construction

of simple pipelines for their visitation.

The treatment given to the sponge’s outputs is then quite similar to that in

the Setup phase: the outputs provided by the sponge are sequentially XORed with

M [row0] (line 33) and, after being rotated, with M [row1] (line 34). However, in

the Wandering phase the sponge’s output is XORed withM [row0] from the lowest

to the highest index, just likeM [row1]. This design decision was adopted because

it allows faster processing, since the columns read are also those overwritten; at

the same time, the subsequent reading of those columns in a pseudorandom order

already thwarts the attack strategy discussed in Section 5.1.2.4, so there is no need

54

to revert the the reading/writing order in this part of the algorithm.

4.1.4 The Wrap-up phase

Finally, after (R · T) duplexing operations are performed during the Wan-

dering phase, the algorithm enters the Wrap-up Phase. This phase consists of a

full-round absorbing operation (line 39) of a single cell of the memory matrix,

M [row0][0]. The goal of this final call to absorb is mainly to ensure that the sque-

ezing of the key bitstring will only start after the application of one full-round f

to the sponge’s state — notice that, as shown in Figure 1, the squeezing phase

starts with b bits being output rather than passing by f and, since the full-round

absorb in line 4, the state was only updated by several calls to the reduced-round

f . This absorb operation is then followed by a full-round squeezing operation

(line 40) for generating k bits, once again without resetting sponge’s internal

state to zeros. As a result, this last stage employs only the regular operations of

the underlying sponge, building on its security to ensure that the whole process is

both non-invertible and the outputs are unpredictable. After all, violating such

basic properties of Lyra2 is equivalent to violate the same basic properties of the

underlying full-round sponge.

4.2 Strictly sequential design

Like with PBKDF2 and other existing PHS, Lyra2’s design is strictly sequen-

tial, as the sponge’s internal state is iteratively updated during its operation.

Specifically, and without loss of generality, assume that the sponge’s state be-

fore duplexing a given input ci is si; then, after ci is processed, the updated

state becomes si+1 = fρ(si ⊕ ci) and the sponge outputs randi, the first b bits of

si+1. Now, suppose the attacker wants to parallelize the duplexing of multiple co-

lumns in lines 13–17 (Setup phase) or in lines 29–35 (Wandering phase), obtaining

55

{rand0, rand1, rand2} faster than sequentially computing rand0 = fρ(s0 ⊕ c0),

rand1 = fρ(s1 ⊕ c1), and then rand2 = fρ(s2 ⊕ c2).

If the sponge’s transformation f was affine, the above task would be quite

easy. For example, if fρ was the identity function, the attacker could use two

processing cores to compute rand0 = s0 ⊕ c0, x = c1 ⊕ c2 in parallel and then,

in a second step, make rand1 = rand0 ⊕ c1, rand2 = rand0 ⊕ x also in parallel.

With dedicated hardware and adequate wiring, this could be done even faster,

in a single step. However, for a highly non-linear transformation fρ, it should be

hard to decompose two iterative duplexing operations fρ(fρ(s0⊕ c0)⊕ c1) into an

efficient parallelizable form, let alone several applications of fρ.

It is interesting to notice that, if fρ has some obvious cyclic behavior, always

resetting the sponge to a known state s after v cells are visited, then the attacker

could easily parallelize the visitation of ci and ci+v. Nonetheless, any reasonably

secure fρ is expected to prevent such cyclic behavior by design, since otherwise

this property could be easily explored for finding internal collisions against the

full f itself.

In summary, even though an attacker may be able to parallelize internal parts

of fρ, the stateful nature of Lyra2 creates several “serial bottlenecks” that prevent

duplexing operations from being executed in parallel.

Assuming that the above-mentioned structural attacks are unfeasible, paral-

lelization can still be achieved in a “brute-force” manner. Namely, the attacker

could create two different sponge instances, I0 and I1, and try to initialize their

internal states to s0 and s1, respectively. If s0 is known, all the attacker needs

to do is compute s1 faster than actually duplexing c0 with I0. For example, the

attacker could rely on a large table mapping states and input blocks to the re-

sulting states, and then use the table entry (s0, c0) 7→ s1. For any reasonable

cryptographic sponge, however, the state and block sizes are expected to be quite

56

large (e.g., 512 or 1,024 bits), meaning that the amount of memory required for

building a complete map makes this approach unpractical.

Alternatively, the attacker could simply initialize several I1 instances with

guessed values of s1, and use them to duplex c1 in parallel. Then, when I0 fi-

nishes running and the correct value of s1 is inevitably determined, the attacker

could compare it to the guessed values, keeping only the result obtained with

the correct instantiation. At first sight, it might seem that a reduced-round f

facilitates this task, since the consecutive states s0 and s1 may share some bits

or relationships between bits, thus reducing the number of possibilities that need

to be included among the guessed states. Even if that is the case, however, any

transformation f is expected to have a complex relation between the input and

output of every single round and, to speed-up the duplexing operation, the attac-

ker needs to explore such relationship faster than actually processing ρ rounds of

f . Otherwise, the process of determining the target guessing space will actually

be slower than simply processing cells sequentially. Furthermore, to guess the

state that will be reached after v cells are visited, the attacker would have to ex-

plore relationships between roughly v · ρ rounds of f faster than merely running

v ·ρ rounds of fρ. Hence, even in the (unlikely) case that guessing two consecutive

states can be made faster than running ρ of f , this strategy scales poorly since

any existing relationship between bits should be diluted as v · ρ approaches ρmax.

An analogous reasoning applies to the Filling / Visitation Loop. The only

difference is that, to parallelize the duplexing of inputs from its consecutive itera-

tions, ci and ci+1, the attacker needs to determine the sponge’s internal state si+1

that will result from duplexing ci without actually performing the C · ρ rounds of

f involved in this operation. Therefore, even if highly parallelizable hardware is

available to attackers, it is unlikely that they will be able to take full advantage

of this potential for speeding up the operation of any given instance of Lyra2.

57

4.3 Configuring memory usage and processing
time

The total amount of memory occupied by Lyra2’s memory matrix is b ·R ·C

bits, where b corresponds to the underlying sponge function’s bitrate. With this

choice of b, there is no need to pad the incoming blocks as they are processed by

the duplex construction, which leads to a simpler and potentially faster imple-

mentation. The R and C parameters, on the other hand, can be defined by the

user, thus allowing the configuration of the amount of memory required during

the algorithm’s execution.

Ignoring ancillary operations, the processing cost of Lyra2 is basically deter-

mined by the number of calls to the sponge’s underlying f function. Its appro-

ximate total cost is, thus: d(|pwd|+ |salt|+ |params|)/be calls in Bootstrapping

phase, plus R·C ·ρ/ρmax in the Setup phase, plus T ·R·C ·ρ/ρmax in the Wandering

phase, plus dk/be in the Wrap-up phase, leading roughly to (T +1) ·R ·C ·ρ/ρmax
calls to f for small lengths of pwd, salt and k. Therefore, while the amount of

memory used by the algorithm imposes a lower bound on its total running time,

the latter can be increased without affecting the former by choosing a suitable T

parameter. This allows users to explore the most abundant resource in a (legi-

timate) platform with unbalanced availability of memory and processing power.

This design also allows Lyra2 to use more memory than scrypt for a similar pro-

cessing time: while scrypt employs a full-round hash for processing each of its

elements, Lyra2 employs a reduced-round, faster operation for the same task.

4.4 On the underlying sponge

Even though Lyra2 is compatible with any hash functions from the sponge

family, the newly approved SHA-3, Keccak (BERTONI et al., 2011b), does not

58

seem to be the best alternative for this purpose. This happens because Kec-

cak excels in hardware rather than in software performance (GAJ et al., 2012).

Hence, for the specific application of password hashing, it gives more advantage

to attackers using custom hardware than to legitimate users running a software

implementation.

Our recommendation, thus, is toward using a secure software-oriented algo-

rithm as the sponge’s f transformation. One example is Blake2b (AUMASSON

et al., 2013), a slightly tweaked version of Blake (AUMASSON et al., 2010b).

Blake itself displays a security level similar to that of Keccak (CHANG et al.,

2012), and its compression function has been shown to be a good permutation

(AUMASSON et al., 2010a; MING; QIANG; ZENG, 2010) and to have a strong

diffusion capability (AUMASSON et al., 2010b) even with a reduced number of

rounds (JI; LIANGYU, 2009; SU et al., 2010), while Blake2b is believed to retain

most of these security properties (GUO et al., 2014).

The main (albeit minor) issue with Blake2b’s permutation is that, to avoid fi-

xed points, its internal state must be initialized with a 512-bit initialization vector

(IV) rather than with a string of zeros as prescribed by the sponge construction.

The reason is that Blake2b does not use the constants originally employed in

Blake2 inside its G function (AUMASSON et al., 2013), relying on the IV for

avoiding possible fixed points. Indeed, if the internal state is filled with zeros as

usually done in cryptographic sponges, any block filled with zeros absorbed by

the sponge will not change this state value. Therefore, the same IV should also

be used for initializing the sponge’s state in Lyra2. In addition, to prevent the IV

from being overwritten by user-defined data, the sponge’s capacity c employed

when absorbing the user’s input (line 4 of Algorithm 5) should have at least 512

bits, leaving up to 512 bits for the bitrate b. After this first absorb, though, the

bitrate may be raised for increasing the overall throughput of Lyra2 if so desired.

59

4.4.1 A dedicated, multiplication-hardened sponge:
BlaMka.

Besides plain Blake2b, another potentially interesting alternative is to em-

ploy a permutation that involves integer multiplications among its operations,

following the “multiplication-hardening” concept (COX, 2014; PESLYAK, 2015)

briefly mentioned in Section 3.2.5 when discussing the yescrypt PHC candidate.

More precisely, this approach is of interest whenever a legitimate user prefers to

rely on a function that provides further protection against dedicated hardware

platforms, while maintaining a high efficiency on platforms such as CPUs.

For this purpose the Blake2b structure may itself be adapted to integrate

multiplications, which is done in the hereby proposed BlaMka algorithm. More

precisely, Blake2b’s G function (see the left side of Figure 4) relies on sequential

additions, rotations and XORs (ARX) for attaining bit diffusion and creating

a mutual dependence between those bits (AUMASSON et al., 2010a; MING;

QIANG; ZENG, 2010). If, however, the additions employed are replaced by

another permutation that includes multiplications and still provides at least the

same capacity of diffusion, its security should not be negatively affected.

a ← a+ b
d ← (d⊕ a)≫ 32
c ← c+ d
b ← (b⊕ c)≫ 24
a ← a+ b
d ← (d⊕ a)≫ 16
c ← c+ d
b ← (b⊕ c)≫ 63
(a) Blake2b’s G function,
based on the addition

operation.

a ← a+ b+ 2 · lsw(a) · lsw(b)
d ← (d⊕ a)≫ 32
c ← c+ d+ 2 · lsw(c) · lsw(d)
b ← (b⊕ c)≫ 24
a ← a+ b+ 2 · lsw(a) · lsw(b)
d ← (d⊕ a)≫ 16
c ← c+ d+ 2 · lsw(c) · lsw(d)
b ← (b⊕ c)≫ 63

(b) BlaMka’s Gtls function, based on a
truncated latin square (tls).

Figure 4: BlaMka’s multiplication-hardened (right) and Blake2b’s original (left)
permutations.

60

One suggestion, originally made by Samuel Neves (one of the authors of

Blake2) (NEVES, 2014), was to replace the additions of integers x and y by

something like the latin square function (WALLIS; GEORGE, 2011) ls(x, y) =

x+y+2 ·x ·y. This would lead to an structure quite similar to what is done in the

NORX authenticated encryption scheme (AUMASSON; JOVANOVIC; NEVES,

2014), but in the additive field. To make it more friendly for implementation

using the instruction set of modern processors, however, one can use a slightly

modified construction that employs the least significant bits of x and y, which can

be seen as a truncated version of the latin square. Some alternatives (one of which

is described in Appendix C of this document) have been evaluated, but the end

result is tls(x, y) = x+y+2 · lsw(x) · lsw(y), as shown in the right side of Figure 4

for theGtls function. This tls operation can be efficiently implemented using fast

SIMD instructions (e.g., _mm_mul_epu, _mm_slli_epi, _mm_add_epi),

and keeps an homogeneous distribution for the F2n
2 7→ Fn2 mapping (i.e., it still is

a permutation).

The resulting structure, whose security and performance are further analyzed

later in Sections 5.5 and 6.2, is indeed quite promising for usage in password

hashing schemes Specifically, it provides better performance on hardware than on

software platforms than Blake2 itself, justifying its early adoption as the default

underlying sponge of Argon2’s official implementation (PHC, 2015a) and also of

Lyra2.

4.5 Practical considerations

Lyra2 displays a quite simple structure, building as much as possible on the

intrinsic properties of sponge functions operating on a fully stateful mode. In-

deed, the whole algorithm is composed basically of loop controlling and variable

initialization statements, while the data processing itself is done by the underlying

61

hash function H. Therefore, we expect the algorithm to be easily implementable

in software, especially if a sponge function is already available.

The adoption of sponges as underlying primitive also gives Lyra2 a lot of

flexibility. For example, since the user’s input (line 4 of Algorithm 3) is processed

by an absorb operation, the length and contents of such input can be easily

chosen by the user, as previously discussed. Likewise, the algorithm’s output is

computed using the sponge’s squeezing operation, allowing any number of bits to

be securely generated without the need of another primitive (e.g., PBKDF2, as

done in scrypt).

Another feature of Lyra2 is that its memory matrix was designed to allow

legitimate users to take advantage of memory hierarchy features, such as caching

and prefetching. As observed in (PERCIVAL, 2009), such mechanisms usually

make access to consecutive memory locations in real-world machines much faster

than accesses to random positions, even for memory chips classified as “random

access”. As a result, a memory matrix having a small R is likely to be visited

faster than a matrix having a small C, even for identical values of R·C. Therefore,

by choosing adequate R and C values, Lyra2 can be optimized for running faster

in the target (legitimate) platform while still imposing penalties to attackers

under different memory-accessing conditions. For example, by matching b · C to

approximately the size of the target platform’s cache lines, memory latency can be

significantly reduced, allowing T to be raised without impacting the algorithm’s

performance in that specific platform.

Besides performance, making C > ρmax is also recommended for security re-

asons: as discussed in Section 4.2, this parametrization ensures that the sponge’s

internal state is scrambled with (at least) the full strength of the underlying hash

function after the execution of the Setup or Wandering phase’s Columns Loops.

The task of guessing the sponge’s state after the conclusion of any iteration of

62

a Columns Loop without actually executing it becomes, thus, much harder. Af-

ter all, assuming the underlying sponge can be modeled as a random oracle, its

internal state should be indistinguishable from a random bitstring.

One final practical concern taken into account in the design of Lyra2 refers to

how long the original password provided by the user needs to remain in memory.

Specifically, the memory position storing pwd can be overwritten right after the

first absorb operation (line 4 of Algorithm 5). This avoids situations in which

a careless implementation ends up leaving pwd in the device’s volatile memory

or, worse, leading to its storage in non-volatile memory due to memory swaps

performed during the algorithm’s memory-expensive phases. Hence, it meets the

general guideline of purging private information from memory as soon as it is not

needed anymore, preventing that information’s recovery in case of unauthorized

access to the device (HALDERMAN et al., 2009; YUILL; DENNING; FEER,

2006).

63

5 SECURITY ANALYSIS

Lyra2’s design is such that (1) the derived key is both non-invertible and

collision resistant, which is due to the initial and final full hashing operations,

combined with reduced-round hashing operations in the middle of the algorithm;

(2) attackers are unable to parallelize Algorithm 5 using multiple instances of

the cryptographic sponge H, so they cannot significantly speed up the process

of testing a password by means of multiple processing cores; (3) once initialized,

the memory matrix is expected to remain available during most of the password

hashing process, meaning that the optimal operation of Lyra2 requires enough

(fast) memory to hold its contents.

For better performance, a legitimate user is likely to store the whole memory

matrix in volatile memory, facilitating its access in each of the several iterations

of the algorithm. An attacker running multiple instances of Lyra2, on the other

hand, may decide not to do the same, but to keep a smaller part of the matrix in

fast memory aiming to reduce the memory costs per password guess. Even though

this alternative approach inevitably lowers the throughput of each individual

instance of Lyra2, the goal with this strategy is to allow more guesses to be

independently tested in parallel, thus potentially raising the overall throughput

of the process.

There are basically two methods for accomplishing this. The first is what we

call a Low-Memory attack, which consists of trading memory for processing time,

64

i.e., discarding (parts of) the matrix and recomputing the discarded information

from scratch, when (and only when) it becomes necessary. The second it to use

low-cost (and, thus, slower) storage devices, such as magnetic hard disks, which

we call a Slow-Memory attack.

In what follows, we discuss both attack venues and evaluate their relative

costs, as well as the drawbacks of such alternative approaches. Our goal with

this discussion is to demonstrate how Lyra2’s design discourages attackers from

making such memory-processing trade-offs while testing many passwords in pa-

rallel. Consequently, the algorithm limits the attackers’ ability to take advantage

of highly parallel platforms, such as GPUs and FPGAs, for password cracking.

In addition the above attacks, the security analysis hereby presented also dis-

cusses the so-called Cache-Timing attacks (FORLER; LUCKS; WENZEL, 2013),

which employ a spy process collocated to the PHS and, by observing the lat-

ter’s execution, could be able to recover the user’s password without the need of

engaging in an exhaustive search. It also evaluates Lyra2 in terms of Garbage-

Collector attacks (FORLER et al., 2014), an attack that explores vulnerabilities

of the memory management during the derivation process. Finally, we present

a preliminary analysis of the BlaMka sponge-based hash function proposed in

Section 4.4.1.

5.1 Low-Memory attacks

Before we discuss low-memory attacks against Lyra2, it is instructive

to consider how such attacks can be perpetrated against scrypt’s ROMix

structure (see Algorithm 3). The reason is that its sequential memory hard de-

sign is mainly intended to provide protection against this particular attack venue.

65

As a direct consequence of scrypt’s memory hard design, we can formulate

Theorem 1:

Theorem 1. Whilst the memory and processing costs of scrypt are both O(R) for

a system parameter R, one can achieve a memory cost of O(1) (i.e., a memory-

free attack) by raising the processing cost to O(R2).

Proof. The attacker runs the loop for initializing the memory array M (lines 9

to 11 of Algorithm 3), which we call ROMixini. Instead of storing the values

of M [i], however, the attacker keeps only the value of the internal variable X.

Then, whenever an element M [j] of M should be read (line 14 of Algorithm 3),

the attacker simply runs ROMixini for j iterations, determining the value of M [j]

and updating X. Ignoring ancillary operations, the average cost of such attack is

R+(R ·R)/2 iterative applications of BlockMix and the storage of a single b-long

variable (X), where R is scrypt’s cost parameter.

In comparison, an attacker trying to use a similar low-memory attack against

Lyra2 would run into additional challenges. First, during the Setup phase, it is

not enough to keep only one row in memory for computing the next one, as each

row requires three previously computed rows for its computation.

For example, after usingM [0]–M [2], those three rows are once again employed

in the computation of M [3], meaning that they should not be discarded or they

will have to be recomputed. Even worse: since M [0] is modified when initializing

M [4], the value to be employed when computing rows that depend on it (e.g.,

M [8]) cannot be obtained directly from the password. Instead, recomputing the

updated value of M [0] requires (a) running the Setup phase until the point it

was last modified (e.g., for the value required by M [8], this corresponds to when

M [4] was initialized) or (b) using some rows still available in memory, XORing

them together to obtain the values of rand[col] that modified M [0] since its

66

initialization.

Whichever the case, this creates a complex net of dependencies that grow in

size as the algorithm’s execution advances and more rows are modified, leading

to several recursive calls. This effect is even more expressive in the Wandering

phase, due to an extra complicating factor: each duplexing operation involves a

random-like (password-dependent) row index that cannot be determined before

the end of the previous duplexing. Therefore, the choice of which rows to keep

in memory and which rows to discard is merely speculative, and cannot be easily

optimized for all password guesses.

Providing a tight bound for the complexity of such low-memory at-

tacks against Lyra2 is, thus, an involved task, especially considering its non-

deterministic nature. Nevertheless, aiming to give some insight on how an at-

tacker could (but is unlikely to want to) explore such time-memory trade-offs, in

what follows we consider some slightly simplified attack scenarios. We emphasize,

however, that these scenarios are not meant to be exhaustive, since the goal of

analyzing them is only to show the approximate (sometimes asymptotic) impact

of possible memory usage reductions over the algorithm’s processing cost.

Formally proving the resistance of Lyra2 against time-memory trade-offs —

e.g., using the theory of Pebble Games (COOK, 1973; DWORK; NAOR; WEE,

2005) as done in (FORLER; LUCKS; WENZEL, 2013; DZIEMBOWSKI; KA-

ZANA; WICHS, 2011) — would be even better, but doing so, possibly building

on the discussion hereby presented, remains as a matter for future work.

5.1.1 Preliminaries

For conciseness, along the discussion we denote by CL the Columns Loop of

the Setup phase (lines 13—17 of Algorithm 5) and of the Wandering phase (lines

29—35). In this manner, ignoring the cost of XORing, reads/writes and other

67

ancillary operations, CL corresponds approximately to C · ρ/ρmax executions of

f , a cost that is denoted simply as σ.

We denote by s0i,j the state of the sponge right before M [i][j] is initialized in

the Setup phase. For i > 3, this corresponds to the state in line 13 of Algorithm 5.

For conciseness, though, we often omit the “j” subscript, using s0i as a shorthand

for s0i,0 whenever the focus of the discussion are entire rows rather than their cells.

We also employ a similar notation for the Wandering phase, denoting by sτi the

state of the sponge during iteration R · (τ − 1) + i of the Visitation Loop (with

1 6 τ 6 T), before the corresponding rows are effectively processed (i.e., the

state in line 27 of Algorithm 5). Analogously, the i-th row (0 6 i < R) output

by the sponge during the Setup phase is denoted r0i , while rτi denotes the output

given by the Visitation Loop’s iteration R · (τ − 1) + i. In this manner, the τ

symbol is employed to indicate how many times the Wandering phase performs

a number of duplexing operations equivalent to that in the Setup phase.

Aiming to keep track of modifications made on rows of the memory matrix, we

recursively use the subscript notation M [XY−Z−...] to denote a row X modified

when it received the same values of rand as row Y , then again when the row

receiving the sponge’s output was Z, and so on. For example, M [13] corresponds

to row M [1] after its cells are XORed with rot(rand) in the very first iteration

of the Setup phase’s Filling Loop. Finally, for conciseness, we write V τ
1 and V τ

2

to denote, respectively, the first and second half of: the Setup phase, for τ = 0;

or the Visitation Loop during iteration R · (τ − 1) + i of the Wandering phase’s

Visitation Loop, for τ > 1.

5.1.2 The Setup phase

We start our discussion analyzing only the Setup phase. Aiming to give

a more concrete view of its execution, along the discussion we use as example

68

Figure 5: The Setup phase.

the scenario with 16 rows depicted in Figure 5, which shows the corresponding

visitation order of such rows and also their modifications due to these visitations.

5.1.2.1 Storing only what is needed: 1/2 memory usage

Suppose that the attacker does not want to store all rows of the memory

matrix during the algorithm’s execution. One interesting approach for doing so

is to keep in buffer only what will be required in future iterations of the Filling

Loop, discarding rows that will not be used anymore. Since the Setup phase is

purely deterministic, doing so is quite easy and, as long as the proper rows are

kept, it incurs no processing penalty. This approach is illustrated in Figure 6.

As shown in this figure, this simple strategy allows the execution of the Setup

phase with a memory usage of R/2 + 1 rows, approximately half of the amount

Figure 6: Attacking the Setup phase: storing 1/2 of all rows. The most recently
modified rows in each iteration are marked in bold.

69

usually required. This observation comes from the fact that each half of the Setup

phase requires all rows from the previous half and two extra rows (those more

recently initialized/updated) to proceed. More precisely, R/2 + 1 corresponds to

the peak memory utilization reached around the middle of the Setup phase, since

(1) until then, part of the memory matrix has not been initialized yet and (2)

rows initialized near the end of the Setup phase are only required for computing

the next row and, thus, can be overwritten right after their cells are used. Even

with this reduced memory usage, the processing cost of this phase remains at

R · σ, just as if all rows were kept in memory.

This attack can, thus, be summarized by the following lemma:

Lemma 1. Consider that Lyra2 operates with parameters T , R and C. Whilst

the regular algorithm’s memory and processing costs of its Setup phase are, res-

pectively, R ·C · b bits and R · σ, it is possible to run this phase with a maximum

memory cost of approximately (R/2) · C · b bits while keeping its total processing

cost to R · σ.

Proof. The costs involved in the regular operation of Lyra2 are discussed in Sec-

tion 4.3, while the mentioned memory-processing trade-off can be achieved with

the attack described in this section.

5.1.2.2 Storing less than what is needed: 1/4 memory usage

If the attacker considers that storing half of the memory matrix is too much,

he/she may decide to discard additional rows, recomputing them from scratch

only when they are needed. In that case, a reasonable approach is to discard

rows that (1) will take longer to be used, either directly or for the recomputation

of other rows, or (2) that can be easily computed from rows already available, so

the impact of discarding them is low. The reasoning behind this strategy is that

it allows the Setup phase to proceed smoothly for as long as possible. Therefore,

70

Figure 7: Attacking the Setup phase: storing 1/4 of all rows. The most recently
modified rows in each iteration are marked in bold.

as rows that are not too useful for the time being (or even not required at all

anymore) are discarded from the buffer, the space saved in this manner can be

diverted to the recomputation process, accelerating it.

The suggested approach is illustrated in Figure 7. As shown in this figure,

at any moment we keep in memory only R/4 = 4 rows of the memory matrix

besides the two most recently modified/updated, approximately half of what is

used in the attack described in Section 5.1.2.1. This allows roughly 3/4 the

Setup phase to run without any recomputation, but after that M [4] is required

to compute row M [C]. One simple way of doing so is to keep in memory the

two most recently modified rows, M [13−7−B] and M [B], and then run the first

half of the Setup phase once again with R/4 + 2 rows. This strategy should

allow the recomputation not only of M [4], but of all the R/4 rows previously

discarded but still needed for the last 1/4 of the Setup phase (in our example,

{M [4],M [7],M [26],M [5]}, as shown at the bottom of Figure 7). The resulting

processing overhead would, thus, be approximately (R/2)σ, leading to a total

cost of (3R/2)σ for the whole Setup.

Obviously, there may be other ways of recomputing the required rows. For

71

example, there is no need to discard M [7] after M [8] is computed, since keeping

it in the buffer after that point would still respect the R/4 + 2 memory cost.

Then, the recomputation procedure could stop after the recomputation of M [26],

reducing its cost in σ. Alternatively, M [4] could have been kept in memory after

the computation of M [7], allowing the recomputations to be postponed by one

iteration. However, then M [7] could not be maintained as mentioned above and

there would be not reduction in the attack’s total cost. All in all, these and other

tricks are not expected to reduce the total recomputation overhead significantly

below (R/2)σ. This happens because the last 1/4 of the Setup phase is designed

in such a manner that the row1 index covers the entire first half of the memory

matrix, including values near 0 and R/2. As a result, the recomputation of all

values of M [row1] input to the sponge near the end of the Setup phase is likely

to require most (if not all) of its first half to be executed.

These observations can be summarized in the following conjecture.

Conjecture 1. Consider that Lyra2 operates with parameters T , R and C.

Whilst the regular memory and processing costs of its Setup phase’s are, res-

pectively, MemSetup(R) = R ·C · b bits and CostSetup(R) = R · σ, its execution

with a memory cost of approximately MemSetup(R)/4 should raise its processing

cost to approximately 3CostSetup(R)/2.

5.1.2.3 Storing less than what is needed: 1/8 memory usage

We can build on the previous analysis to estimate the performance penalty

incurred when reducing the algorithm’s memory usage by another half. Namely,

imagine that Figure 7 represents the first half of the Setup phase (denoted V 0
1)

for R = 32, in an attack involving a memory usage of R/8 = 4. In this case,

recomputations are needed after approximately 3/8 of the Setup phase is exe-

cuted. However, these are not the only recomputations that will occur, as the

72

entire second half of the memory matrix (i.e., R/2 rows) still needs to be initiali-

zed during the second half of the Setup phase (denoted V 0
2). Therefore, the R/2

rows initialized/modified during V 0
1 will be once again required. Now suppose

that the R/8 memory budget is employed in the recomputation of the required

rows from scratch, running V 0
1 again whenever a group of previously discarded

rows is needed. Since a total of R/2 rows need recomputation, the goal is to

recover each of the (R/2)/(R/8) = 4 groups of R/8 rows in the sequence they are

required during V 0
2 , similarly to what was done a single time when the memory

committed to the attack was R/4 rows (section 5.1.2.2). In our example, the four

groups of rows required are (see Table 1): g1 = {M [04−8],M [9],M [26−E],M [B]},

g2 = {M [4C],M [D],M [6A],M [F]}, g3 = {M [8],M [13−7−B],M [A],M [35−9]}, and

g4 = {M [C],M [5F],M [E],M [7D]}, in this sequence.

To analyze the cost of this strategy, assume initially that the memory budget

of R/8 is enough to recover each of these groups by means of a single (partial

or full) execution of V 0
1 . First, notice that the computation of each group from

scratch involves a cost of at least (R/4)σ, since the rows required by V 0
2 have

all been initialized or modified after the execution of 50% of V 0
1 . Therefore, the

lowest cost for recovering any group is (3R/8)σ, which happens when that group

involves only rows initialized/modified beforeM [R/4+R/8] (this is the case of g3

in our example). A full execution of V 0
1 , on the other hand, can be obtained from

Conjecture 1: the buffer size is MemSetup(R/2)/4 = R/8 rows, which means

that the processing cost is now 3CostSetup(R/2)/2 = (3R/4)σ (in our example,

full executions are required for g2 and g4, due to rows M [F] and M [5F]). From

these observations, we can estimate the four re-executions of V 0
1 to cost between

4(3R/8)σ and 4(3R/4)σ, leading to an arithmetic mean of (9R/4)σ. Considering

that a full execution of V 0
1 occurs once before V 0

2 is reached, and that V 0
2 itself

involves a cost of (R/2)σ even without taking the above overhead into account,

73

the base cost of the Setup phase is (3R/4+R/2)σ. With the overhead of (9R/4)σ

incurred by the re-executions of V 0
1 , the cost of the whole Setup phase becomes

then (7R/2)σ.

We emphasize, however, that this should be seen a coarse estimate, since it

considers four (roughly complementary) factors described in what follows.

1. The one-to-one proportion between a full and a partial execution of V 0
1

when initializing rows of V 0
2 is not tight. Hence, estimating costs with the

arithmetic mean as done above may not be strictly correct. For example,

going back to our scenario with R = 32 and a R/8 memory usage, the only

group whose rows are all initialized/modified beforeM [R/2−R/8] = M [C]

is g3. Therefore, this is the only group that can be computed by running

the part of V 0
1 that does not require internal recomputations. Consequently,

the average processing cost of recomputing those groups during V 0
2 should

be higher.

2. As discussed in section 5.1.2.2, the attacker does not necessarily need to

always compute everything from scratch. After all, the committed memory

budget can be used to bufferize a few rows from V 0
1 , avoiding the need

of recomputing them. Going back to our example with R = 32 and R/8

rows, if M [26−E] remains available in memory when V 0
2 starts, g1 can be

recovered by running V 0
1 once, until M [B] is computed, which involves no

internal recomputations. This might reduce the average processing cost of

recomputations, possibly compensating the extra cost incurred by factor 1.

3. The assumption that each of the four executions of V 0
1 can recover an entire

group with the costs hereby estimated is not always realistic. The reason

is that the costs of V 0
1 as described in section 5.1.2.2 are attained when

what is kept in memory is only the set of rows strictly required during V 0
1 .

74

Figure 8: Attacking the Setup phase: recomputing M [6A] while storing 1/8 of
all rows and keeping M [F] in memory. The most recently modified rows in each
iteration are marked in bold.

In comparison, in this attack scenario we need to run V 0
1 while keeping

rows that were originally discarded, but now need to remain in the buffer

because they are used in V 0
2 . In our example, this happens with M [6A],

the third row from g2: to run V 0
1 with a cost of (3R/4)σ, M [6A] should

be discarded soon after being modified (namely, after the computation of

M [B]), thus making room for rows {M [4],M [7],M [26],M [5]}. Otherwise,

M [4C] andM [D] cannot be computed while respecting the R/8 = 4 memory

limitation. Notice that discarding M [6A] would not be necessary if it could

be consumed in V 0
2 before M [4C] and M [D], but this is not the case in

this attack scenario. Therefore, to respect the R/8 = 4 memory limitation

while computing g2, in principle the attacker would have to run V 0
1 twice:

the first to obtainM [4C] andM [D], which are promptly used in V 0
2 , as well

as M [F], which remains in memory; and the second for computing M [6A]

while maintaining M [F] in memory so it can be consumed in V 0
2 right after

M [6A]. This strategy, illustrated in Figure 8, introduces an extra overhead

of 11σ to the attack in our example scenario.

75

4. Finally, there is no need of computing an entire group of rows from V 0
1

before using those rows in V 0
2 . For example, suppose that M [04−8] and

M [9] are consumed by V 0
2 as soon as they are computed in the first

re-execution of V 0
2 . These rows can then be discarded and the attacker can

use the extra space to build g
′
1 = {M [26−E],M [B],M [4C],M [D]} with a

single run of V 0
1 . This approach should reduce the number of re-executions

of V 0
1 and possibly alleviate the overhead from factor 3.

5.1.2.4 Storing less than what is needed: generalization

We can generalize the discussion from section 5.1.2.3 to estimate the proces-

sing costs resulting from recursively reducing the Setup phase’s memory usage

by half. This can be done by imagining that any scenario with a R/2n+2 (n > 0)

memory usage corresponds to V 0
1 during an attack involving half that memory.

Then, representing by CostSetupn(m) the number of times CL is executed

in each window containing m rows (seen as V 0
1 by the subsequent window) and

following the same assumptions and simplifications from Section 5.1.2.3, we can

write the following recursive equation:

CostSetup0(m) = 3m/2 . 1/4 memory usage scenario (n = 0)

CostSetupn(m) =

V 0
1

CostSetupn−1(m/2) +

V 0
2

m/2 +

Re-executions of V 0
1

(3 · CostSetupn−1(m/2)/4)

approximate cost of
each execution

· (2n+1)

number of
executions

(5.1)

76

For example, for n = 2 (and, thus, a memory usage of R/16), we have:

CostSetup2(R) = CostSetup1(R/2) +R/2 + (3 · CostSetup1(R/2)/4) · (22+1)

= 7CostSetup1(R/2) +R/2

= 7(CostSetup0(R/4) +R/4+

(3 · CostSetup0(R/4)/4) · (21+1)) +R/2

= 7(3R/8 +R/4 + (3 · (3R/8)/4) · 4) +R/2

= 51R/4

In Equation 5.1, we assume that the cost of each re-execution of V 0
1 can

be approximated to 3/4 of its total cost. We argue that this is a reasonable

approximation because, as discussed in section 5.1.2.3, between 50% and 100%

of V 0
1 needs to be executed when recovering each of the (R/2)/(R/2n+2) = 2n+1

groups of R/2n+2 rows required by V 0
2 .

The fact that Equation 5.1 assumes that only 2n+1 re-executions of V 0
1 are

required, on the other hand, is likely to become an oversimplification as R and

n grow. The reason is that factor 4 discussed in section 5.1.2.3 is unlikely to

compensate factor 3 in these cases. After all, as the memory available drops, it

should become harder for the attacker to spare some space for rows that are not

immediately needed.

The theoretical upper limit for the number of times V 0
1 would have to be

executed during V 0
2 when the memory usage is m would then be m/4: this cor-

responds to a hypothetical scenario in which, unless promptly consumed, no row

required by V 0
2 remains in the buffer during V 0

1 ; then, since V 0
2 revisits rows from

V 0
1 in an alternating pattern, approximately a pair of rows can be recovered with

each execution of V 0
1 , as the next row required is likely to have already been

computed and discarded in that same execution.

77

The recursive equation for estimating this upper limit would then be (in

number of executions of CL):

CostSetup0(m) = 3m/2 . 1/4 memory usage scenario (n = 0)

CostSetupn(m) =

V 0
1

CostSetupn−1(m/2) +

V 0
2

m/2 +

Re-executions of V 0
1

(3 · CostSetupn−1(m/2)/4)

approximate cost of
each execution

· (m/4)

number of
executions

(5.2)

The upper limit for a memory usage of R/16 could then be computed as:

CostSetup2(R) = CostSetup1(R/2) +R/2 + (3 · CostSetup1(R/2)/4) · (R/4)

= (1 + 3R/16)CostSetup1(R/2) +R/2

= (1 + 3R/16)(CostSetup0(R/4) +R/4+

(3 · CostSetup0(R/4)/4) · (R/8)) +R/2

= (1 + 3R/16)(3R/8 +R/4 + (3 · (3R/8)/4) · (R/8)) +R/2

= 18(R/16) + 39(R/16)2 + (3R/16)3

Even though this upper limit is mostly theoretical, we do expect the Rn+1

component resulting from Equation 5.2 to become expressive and dominate the

running time of Lyra2’s Setup phase as n grows and the memory usage drops

much below R/28 (i.e., for n � 1). In summary, these observations can be

formalized in the following Conjecture:

Conjecture 2. Consider that Lyra2 operates with parameters T , R and C.

Whilst the regular memory and processing costs of its Setup phase’s are, res-

pectively, MemSetup = R · C · b bits and CostSetup = R · σ, running it with

a memory cost of approximately MemSetup/2n+2 leads to an average processing

cost CostSetupn(R) that is given by recursive Equations 5.1 (for a lower bound)

and 5.2 (for an upper bound).

78

5.1.2.5 Storing only intermediate sponge states

Besides the strategies mentioned in the previous sections, and possibly com-

plementing them, one can try to explore the fact that the sponge states are usually

smaller than a row’s cells for saving memory: while rows have b · C bits, a state

is up to C times smaller, taking w = b + c bits. More precisely, by storing all

sponge states, one can recompute any cell of a given row whenever it is required,

rather than computing the entire row at once. For example, the initialization of

each cell of M [2] requires only one cell from M [1]. Similarly, initializing a cell of

M [4] takes one cell from M [0], as well as one from M [1] and up to two cells from

M [3] (one because M [3] is itself fed to the sponge and another required to the

computation of M [13]).

An attack that computes only one cell at a time would be easy to build if the

cells sequentially output by the sponge during the initialization of M [i] could be

sequentially employed as input in the initialization of M [j > i]. Indeed, in that

hypothetical case, one could build a circuitry like the one illustrated in Figure 9

to compute cells as they are required. For example, one could compute M [2][0]

in this scenario with (1) states s00,0, s01,0 and s02,0, and (2) two b-long buffers, one

for M [0][0] so it can be used for computing M [1][0], and the other for storing

M [1][0] itself, used as input for the sponge in state s02,0. After that, the same

buffers could be reused for storing M [0][1] and M [1][1] when computing M [2][1],

using the same sponge instances that are now in states s00,1, s01,1 and s02,1. This

Figure 9: Attacking the Setup phase: storing only sponge states.

79

process could then be iteratively repeated until the computation of M [2][C−1].

At that point, we would have the value of s03,0 and could apply an analogous

strategy for computingM [3]. The total processing cost of computingM [2] would

then be 3σ, since it would involve one complete execution of CL for each of the

sponge instances initially in states s00,0, s01,0 and s02,0. As another example, the

computation of M [4][col] could be performed in a similar manner, with states

s00,0 — s04,0 and buffers for M [0][col], M [1][col] and M [3][col] (used as inputs for

the sponge in state s04,0), as well as for M [2][col] (required in the computation of

M [3][col]); the total processing cost would then be 5σ.

Generalizing this strategy, any M [row] could be processed using only row

buffers and row+1 sponge instances in different states, leading to a cost of row ·σ

for its computation. Therefore, for the whole Setup phase, the total processing

cost would be around (R2/2)σ using approximately 2/C of the memory required

in a regular execution of Lyra2.

Even though this attack venue may appear promising at first sight for a large

C/R ratio, it cannot be performed as easily as described in the above theoretical

scenario. This happens because Lyra2 reverses the order in which a row’s cells

are written and read, as illustrated in Figure 10. Therefore, the order in which

the cells from any M [i] are picked to be used as input during the initialization

of M [j > i] is the opposite of the order in which they are output by the sponge.

Considering this constraint, suppose we want to sequentially recompute M [1][0]

through M [1][C−1] as required (in that order) for the initialization of M [2][C−1]

through M [2][0] during the first iteration of the Filling Loop. From the start,

we have a problem: since M [1][0] = M [0][C−1] ⊕Hρ.duplex(M [0][C−1], b), its

recomputation requiresM [0][C−1] and s01,C−1. Consequently, computingM [2][C−

1] as in our hypothetical scenario would involve roughly σ to computeM [0][0] from

s00,0. A similar issue would occur right after that, when initializing M [2][C − 2]

80

Figure 10: Reading and writing cells in the Setup phase.

fromM [1][1]: unless inverting the sponge’s (reduced-round) internal permutation

is itself easy, M [0][1] cannot be easily obtained from M [0][0], and neither the

sponge state s01,C−2 (required for recomputing M [1][1]) from s01,C−1. On the other

hand, recomputing M [0][1] and s01,C−2 from the values of s00,1 and s01,1 resulting

from the previous step would involve a processing cost of approximately (C −

2)σ/C. If we repeat this strategy for all cells of M [2], the total processing cost

of initializing this row should be on the order of C times higher the “σ” obtained

in our hypothetical scenario. Since the conditions for this C multiplication factor

appear in the computation of any other row, the processing time of this attack

venue against Lyra2 is expected to become C(R2/2)σ rather than simply (R2/2)σ,

counterbalancing the memory reduction lower than 1/C potentially obtained.

Obviously, one could store additional sponge states aiming for a lower pro-

cessing time. For example, by storing the sponge state s0i,C/2 in addition to s0i,0,

the attack’s processing costs may be reducible by half. However, the memory

cuts obtained with this approach diminish as the number of intermediate sponge

states stored grow, eventually defeating the whole purpose of the attack. All

81

things considered, even if feasible, this attack venue does not seem much more

advantageous than the approaches discussed in the previous sections.

5.1.3 Adding the Wandering phase: consumer-producer
strategy

During each iteration of the Wandering phase, the rows modified in the pre-

vious iteration are input to the sponge together with two other (pseudorandomly

picked) rows. The latter two rows are then XORed with the sponge’s output and

the result is fed to the sponge in the subsequent iteration. To analyze the effects

of this phase, it is useful to consider an “average”, slightly simplified scenario like

the one depicted in Figure 11, in which all rows are modified only once during

every R/2 iterations of the Visitation Loop, i.e., during V 1
1 the sets formed by

the values assumed by row0 and by row1 are disjoint. We then apply the same

principle to V 1
2 , modifying each row only once more in a different (arbitrary)

pseudorandom order. We argue that this is a reasonable simplification, given the

fact that the indices of the picked rows form an uniform distribution.

In addition, we argue that this is actually beneficial for the attacker, since

any row required during V 1
1 can be obtained simply by running the Setup phase

once again, instead of involving recomputations of the Wandering phase itself.

We also note that, in the particular case of Figure 11, we make the visitation

order in V 1
1 be the exact opposite of the initialization/update of rows during V 0

2 ,

Figure 11: An example of the Wandering phase’s execution.

82

while in V 1
2 the order is the same as in V 1

1 , for the sake of illustrating worst and

best case scenarios (respectively).

In this scenario, the R/2 iterations of V 1
1 cover the entire memory matrix.

The relationship between V 1
1 and V 0

2 is, thus, very similar to that between V 0
2 and

V 0
1 : if any row initialized/modified during V 0

2 is not available when it is required

by V 1
1 , then it is probable that the Setup phase will have to be (partially) run

once again, until the point the attacker is able to recover that row. However,

unlike the Setup phase, the probabilistic nature of the Wandering phase prevents

the attacker from predicting which rows from V 1
1 can be safely discarded, which

is deemed to raise the average number of re-executions of V 1
1 . Consequently, we

can adapt the arguments employed in Section 5.1.2 to estimate the cost of low-

memory attacks when the execution includes the Wandering phase, which is done

in what follows for different values of T .

5.1.3.1 The first R/2 iterations of the Wandering phase with 1/2
memory usage.

We start our analysis with an attack involving only R/2 rows and T = 1.

Even though this memory usage would allow the attacker to run the whole Setup

phase with no penalty (see Section 5.1.2.1), the Wandering phase’s Visitation

Loop is not so lenient: in each iteration of V 1
1 , there is only a 25% chance that

row0 and row1 are both available in memory. Hence, 75% of the time the attacker

will have to recompute at least one of the missing rows.

To minimize the cost of V 1
1 in this context, one possible strategy is to always

keep in memory rowsM [i > 3R/4], using the remaining R/4 memory budget as a

spare for recomputations. The reasoning behind this approach is that: (1) 3/4 of

the Setup phase can be run with R/4 without internal recomputations (see section

5.1.2.2); (2) since rows M [i > 3R/4] are already available, this execution gives

83

the updated value of any row ∈ [R/2, R[and of half of the rows ∈ [0, R/2[; and

(3) by XORing pairs of rows M [i > 3R/4] accordingly, the attacker can recover

any r0i>3R/4 output by the sponge and, then, use it to compute the updated value

of any row ∈ [0, R/2[from the values obtained from the first half of the Setup.

In the scenario depicted by Figure 11, for example, M [5F] can be recovered by

computing M [5] and then making M [5F][col] = M [5][col] ⊕ rot(r0F [col]), where

r0F [col] = M [F][C−1−col]⊕M [E][col].

With this approach, recomputing rows when necessary can take from (R/4)σ

to (3R/4)σ if the Setup phase is executed just like shown in Section 5.1.2.1. It is

not always necessary pay this cost for every iteration of V 1
1 , however, if the needed

row(s) can be recovered from those already in memory. For example, if during V 1
1

the rows are visited in the exact same order of their initialization/update in V 0
2 ,

then each row recovered can be used by V 1
1 before being discarded. In principle, a

very lucky attacker could then be able to run the entire V 1
1 by executing 3/4 of the

Setup only once. Assuming for simplicity that the (R/2)σ average models a more

usual scenario, the cost of each of the R/2 iterations of V 1
1 can be estimated as: 1

in 1/4 of these iterations, when row0 and row1 are both in memory; and roughly

(R/2)σ in 3/4 of its iterations, when one or a pair of rows need to be recovered.

The total cost of V 1
1 becomes, thus, ((1/4) · (R/2) + (3/4) · (R/2) · (R/2))σ ≈

(3R2/16)σ.

After that, when V 1
2 is reached, the situation is different from what happens in

V 1
1 : since the rows required for any iteration of V 1

2 have been modified during the

execution of V 1
1 , it does not suffice to (partially) run the Setup phase once again

to get their values. For example, in the scenario depicted in Figure 11, the rows

required for iteration i = 8 of the Visitation Loop besides M [prev0] = M [A] and

M [prev1] = 9 are M [813−7−B
] and M [B6A], both computed during V 1

1 . Therefore,

if these rows have not been kept in memory, V 1
1 will have to be (partially) run once

84

again, which implies new runs of the Setup itself. The cost of these re-executions

are likely to be lower than originally, though, because now the attacker can take

advantage of the knowledge about which rows from V 0
2 are needed to compute

each row from V 1
1 . On the other hand, keeping M [i > 3R/4] is unlikely to

be much advantageous now, because that would reduce the attacker’s ability to

bufferize rows from V 1
1 .

In this context, one possible approach is to keep in memory the sponge’s state

at the beginning of V 1
1 (i.e., s10), as well as the corresponding value of prev0�prev1

used as part of the sponge’s input at this point (in our example, M [F]�M [5F]).

This allows the Setup and V 1
1 to run as different processes following a producer-

consumer paradigm: the latter can proceed as long as the required inputs (rows)

are provided by the former, the available memory budget being used to build their

buffers. Using this strategy, the Setup needs to be run from 1 to 2 times during

V 1
1 . The first case refers to when each pair of rows provided by an iteration of V 0

2

can be consumed by V 1
1 right away, so they can be removed from the Setup’s buffer

similarly to what is done in Section 5.1.2.1. This happens if rows are revisited in

V 1
1 in the same order lastly initialized/updated during V 0

2 . The second extreme

occurs when V 1
1 takes too long to start consuming rows from V 0

2 , so some rows

produced by the latter end up being discarded due to lack of space in the Setup’s

buffer. This happens, for example, if V 1
1 revisits rows indexed by row0 during V 0

2

before those indexed by row1, in the reverse order of their initialization/update,

as is the case in Figure 11. Then, ignoring the fact that the Setup only starts

providing useful rows for V 1
1 after half of its execution, on average we would have

to run the Setup 1.5 times, these re-executions leading to an overhead of roughly

(3R/2)σ.

From these observations, we can estimate that recomputing any row from V 1
2

would require running 50% of V 1
1 on average. The cost of doing so would be

85

(R/4 + 3R/4)σ, the first parcel of the sum corresponding to cost of V 1
1 ’s internal

iterations and the second to the overhead incurred by the underlying Setup re-

executions. As a side effect, this would also leave in V 1
1 ’s buffer R/2 rows, which

may reveal useful during the subsequent iteration of V 1
2 . The average cost of

the R/2 iterations of V 1
2 would then be: σ whenever both M [row0] and M [row1]

are available, which happens in 1/4 of these iterations; roughly Rσ whenever

M [row0] and/or M [row1] need to be recomputed, so for 1/4 of these iterations.

This leads to a total cost of (R/8+3R2/8)σ for V 1
2 . Adding up the cost of Setup,

V 1
1 and V 1

2 , the computation cost of Lyra2 when the memory usage is halved and

T = 1 can then be estimated as Rσ + (3R2/16)σ + (R/8 + 3R2/8)σ ≈ (3R/4)2σ

for this strategy.

5.1.3.2 The whole Wandering phase with 1/2 memory usage

Generalizing the discussion for all iterations of the Wandering phase, the

execution of V τ
1 (resp. V τ

2) could use V τ−1
2 (resp. V τ

1) similarly to what is

done in Section 5.1.3.1. Therefore, as Lyra2’s execution progresses, it creates a

dependence graph in the form of an inverted tree as depicted in Figure 12, level

` = 0 corresponding to the Setup phase and each R/2 iterations of the Visitation

Loop raising the tree’s depth by one. Hence, the full execution of any level ` > 0

requires roughly all rows modified in the previous level (` − 1). With R/2 rows

in memory, the original computation of any level ` can then be described by the

following recursive equation (in number of executions of CL):

CostWander∗` =

no re-execution of
previous levels

(1/4)(R/2)

25% of
iterations

·1 +

re-executions of
previous levels

(3/4)(R/2)

75% of
iterations

·CostWander`−1/2 (5.3)

86

Figure 12: Tree representing the dependence among rows in Lyra2.

The value of CostWander`−1 in Equation 5.3 is lower than that of

CostWander∗`−1, however, since the former is purely deterministic. To esti-

mate such cost, we can use the same strategy adopted in Section 5.1.3.1: keeping

the sponge’s state at the beginning of each level ` and the corresponding value

of prev0 � prev1, and then running level ` − 1 1.5 times on average to recover

each row that needs to be consumed. For any level `, the resulting cost can be

described by the following recursive equation:

CostWander0 = R . The Setup phase

CostWander` = R/2

internal
computations

+ (3/2) · CostWander`−1
re-executions of

previous level (`− 1)

= R · (2(3/2)` − 1) (5.4)

Combining Equations 5.3 and 5.4 with Lemma 1, we get that the cost (in

number of executions of CL) of running Lyra2 with half of the prescribed memory

usage for a given T would be roughly:

CostLyra2(1/2)(R, T) = R + CostWander∗1 + · · ·+ CostWander∗2T

= (T + 4) · (R/4) + (3R2/4) · ((3/2)2T − (T + 2)/2)

= O((3/2)2TR2)

(5.5)

87

5.1.3.3 The whole Wandering phase with less than 1/2 memory usage

A memory usage of 1/2n+2 (n > 0) is expected to have three effects on the

execution of the Wandering phase. First, the probability that row0 and row1

will both be available in memory at any iteration of the Visitation Loop drops to

1/2n+2, meaning that Equation 5.3 needs to be updated accordingly. Second, the

cost of running the Setup phase is deemed to become higher, its lower and upper

bounds being estimated by Equations 5.1 and 5.2, respectively. Third, level `− 1

may have to be re-executed 2n+2 times to allow the recovery of all rows required

by level `, which has repercussions on Equation 5.4: on average, CostWander`

will involve (1 + 2n+2)/2 ≈ 2n+1 calls to CostWander`−1.

Combining these observations, we arrive at

CostWander∗`,n =

no re-execution of
previous levels

(R/2) · (1/2n+2)

1/2n+2 of iterations

·1 +

re-executions of
previous levels

(R/2) · (1− 1/2n+2)

all other iterations

·(CostWander`−1,n)/2

(5.6)

as an estimate for the original (probabilistic) executions of level `, and at

CostWander0,n = CostSetupn(R) . The Setup phase

CostWander`,n =

internal
computations

R/2 +

re-executions of
previous level

(2n+1)CostWander`−1,n

= (R/2) · (1− (2n+1)`)/(1− 2n+1) + (2n+1)` · CostSetupn(R)

(5.7)

for the deterministic re-executions of level `.

Equations 5.6 and 5.7 can then be combined to provide the following estimate

88

to the total cost of an attack against Lyra2 involving R/2n+2 rows instead of R:

CostLyra2(1/2n+2)(R, T) = (CostSetupn(R) + CostWander∗1,n + · · ·+

CostWander∗2T,n)σ

≈ O((R2)(22nT) +R · CostSetupn(R) · 22nT)

(5.8)

Since, as suggested in Section 5.1.2.4, the upper bound CostSetupn =

O(Rn+1) given by Equation 5.2 is likely to become a better estimate for

CostSetupn as n grows, we conjecture that the processing cost of Lyra2 using

the strategy hereby discussed be O(22nTRn+2) for n� 1.

5.1.4 Adding the Wandering phase: sentinel-based stra-
tegy

The analysis of the consumer-producer strategy described in Section 5.1.3

shows that updating many rows in the hope they will be useful in an iteration

of the Wandering phase’s Rows Loop does reduce the attack cost by too much,

since these rows are only useful 25% of the time; in addition, it has the disad-

vantage of discarding the rows initialized/updated during V Loop10, which are

certainly required 75% of the time. From these observations, we can consider an

alternative strategy that employs the following trick1: if we keep in memory all

rows produced during V 0
1 and a few rows initialized during V 0

2 together with the

corresponding sponge states, we can skip part of the latter’s iterations when ini-

tializing/updating the rows required by V 1
1 . In our example scenario, we would

keep in memory rows M [04] − M [7] as output by V 0
1 . Then, by keeping rows

M [C] and M [4C] in memory together with state s0D, M [D] and M [7D] can be

recomputed directly from M [7] with a cost of σ, while M [F] and M [5F] can be

recovered with a cost of 3σ. In both cases, M [C] and M [4C] act as “sentinels”
1This is analogous to the attack presented in (KHOVRATOVICH; BIRYUKOV; GROBS-

CHÄDL, 2014) for the version of Lyra2 originally submitted to the Password Hashing Compe-
tition as “V1”

89

that allow us to skip the computation of M [8]−M [C].

More generally, suppose we keep rows M [0 6 i < R/2], obtained by running

V 0
1 , as well as ε > 0 sentinels equally distributed in the range [R/2, R[. Then, the

cost of recovering any row output by V 0
2 would range from 0 (for the sentinels

themselves) to (R/2ε)σ (for rows the farthest away from the sentinels), or (R/4ε)σ

on average. The resulting memory cost of such strategy is approximately R/2

(for the rows from V 0
1), plus 2ε (for the fixed sentinels), plus 2 (for storing the

value of prev0 and prev1 while computing a given row inside the area covered

by a fixed sentinel). When compared with the consumer-produces approach, one

drawback is that only the 2ε rows acting as sentinels can be promptly consumed

by V 1
1 , since rows provided by V 0

1 are overwritten during the execution of V 0
2 .

Nonetheless, the average cost of V 1
1 ends up being approximately (R/2) · (R/4ε)σ

for a small ε, which is lower than in the previous approach for ε > 2. With

ε = R/32 sentinels (i.e., R/16 rows), for example, the processing cost of V 1
1

would be 4R for a memory usage less than 10% above R/2.

We can then employ a similar trick for the execution of V 1
2 , by placing sentinels

along the execution of V 1
1 to reduce the cost of the latter’s recomputations. For

instance, M [98] and M [89] could be used as sentinels to accelerate the recovery

of rows visited in the second half of V 1
1 in our example scenario (see Figure 11).

However, in this case the sentinels are likely to be less effective. The reason is that

the steps taken from each sentinel placed in V 1
1 should cover different portions

of V 0
2 , obliging some iterations of V 0

2 to be executed. For example, using the

same ε = R/32 sentinels as before to keep the memory usage near R/2, we could

distribute half of them along V 0
2 and the other half along V 1

1 , so each would be

covered by ε′ = ε/2 sentinels. As a result, any row output by V 1
1 or V 0

2 could be

recovered with R/4(ε′) = 16 executions of CL on average. Unfortunately for the

attacker, though, any iteration of V 1
2 takes two rows from V 1

1 , which means that

90

2 · 16 = 32 iterations of V 1
1 are likely to be executed and, hence, that roughly

2 · 32 = 64 rows from V 0
2 should be required. If all of those 64 rows fall into areas

covered by different sentinels placed at V 0
2 , the average cost when computing any

row from V 1
2 would be approximately 64 · 16 = 1024 executions of CL. In this

case, the cost of the R/2 iterations of V 1
2 would become roughly (1024R/2)σ on

average. This is lower than the ≈ (R2/2)σ obtained with the consumer-producer

strategy for R > 1024, but still orders of magnitude more expensive than a regular

execution with a memory usage of R.

Obviously, two or more of the 64 rows required from V 0
2 may fall in the area

covered by a same sentinel, which allows for a lower number of executions if

the attacker computes those rows in a single sweep and keep them in memory

until they are required. Even though this approach is likely to raise the attack’s

memory usage, it would lead to a lower processing cost, since any part of V 0
2

covered by a same sentinel would be run only once during any iteration of V 1
2 .

However, if the number of sentinels in V 0
2 is large in comparison with the number

of rows required by each of V 1
2 ’s iteration (i.e., for ε/2 � 64, which implies

R� 8192), we can ignore such “sentinel collisions” and the average cost described

above should hold. This should also the cost obtained if the attacker prefers not

to raise the attack’s memory usage when collisions occur, but instead recomputes

rows that can be obtained from a given sentinel by running the same part of V 0
2

more than once.

For the sake of completeness, it is interesting to analyze such memory-

processing tradeoffs for dealing with collisions when the cost of this sentinel-based

strategy starts to get higher than the one obtained with the consumer-producer

strategy. Specifically, for R = 1024 this strategy is deemed to create many senti-

nel collisions, with each of the ε′ = 16 sentinels placed along V 0
2 being employed

for recomputing roughly 64/16 = 4 out of the 64 rows from V 0
2 required by each

91

iteration of V 1
2 . In this scenario, the 4 rows under a same sentinel’s responsibility

can recovered in a single sweep and then stored until needed. Assuming that

those 4 rows are equally distributed over the corresponding sentinel’s coverage

area, the average cost of the executions related to that sentinel would then be

(7/8)(R/2)/(ε/2) = 28σ. This leads to 16 · 28σ = 448σ for all 16 partial runs of

V 0
2 , and consequently to (448R/2)σ for the whole V 1

2 . In terms of memory usage,

the worst case scenario from the attacker’s perspective refers to when the rows

computed last from each sentinel are the first ones required during V 1
2 , meaning

that recovering 1 row that is immediately useful leaves in memory 3 that are not.

This situation would lead to a storage of 3(ε/2) = 3R/64 rows, which corresponds

to 75% of the R/16 rows already employed by the attack besides the R/2 base

value.

As a last remark, notice that the 64 rows from V 0
2 can be all recovered in

parallel, using 64 different processing cores, the same applying to the 2 rows from

V 1
1 , with 2 extra cores. The average cost of V 1

2 as perceived by the attacker would

then be roughly (16 + 16)(R/2)σ, which corresponds to a parallel execution of

V 0
2 followed by a parallel execution of V 1

1 . In this case, however, the memory

usage would also be slightly higher: since each of the 66 threads would have to

be associated its own prev0 and prev1, the attack would require an additional

memory usage of 132 rows.

5.1.4.1 On the (low) scalability of the sentinel-based strategy

Even though the sentinel strategy shows promise in some scenarios, it has

low scalability for values of T higher than 1. The reason is that, as T grows,

the computation of any given row depends on rows recomputed from an expo-

nentially large number of sentinels. This is more easily observed if we analyze

the dependence graph depicted in Figure 13 for T = 2, which shows the number

92

Figure 13: Tree representing the dependence among rows in Lyra2 with T = 2:
using ε′ sentinels per level.

of rows from level ` − 1 that are needed in the sentinel-based computation of

level `. In this scenario, if we assume that the ε sentinels are distributed along

V 0
2 , V 1

1 , V 1
2 and V 2

1 (levels ` = 0 to 3, respectively), each level will get ε′ = ε/4

sentinels, being divided in R/2ε′ areas. As a result, even though computing a row

from level ` = 4 takes only 2 rows from level ` = 3, computing a row from level

` < 4 involves roughly R/4ε′ iterations of that level, those iterations requiring

2(R/4ε′) rows from level ` − 1. Therefore, any iteration of V 2
2 is expected to

involve the computation of 24(R/4ε′)3 rows from V 0
2 , which translates to 219 rows

for ε = R/32. If each of these rows is computed individually, with the usual cost

of (R/4ε′)σ per row, the recomputations related to sentinels from V 0
2 alone would

take 219(R/4ε′)σ = 224 ·σ, leading to a cost higher than (224 ·R/2)σ for the whole

V 2
2 .

More generally, for arbitrary values of T and ε = R/α (and, hence, ε′ = ε/2T),

the recomputations in V 0
2 for each iteration of V T

2 would take 22T · (R/4ε′)2Tσ, so

the cost of V T
2 itself would become (α·T)2T (R/2)σ. Depending on the parameters

employed, this cost may be higher than the O((3/2)2TR2) obtained with the

consumer-producer strategy, making the latter a preferred attack venue. This is

the case, for example, when we have α = 32, as in all previous examples, R 6 220,

93

as in all benchmarks presented in Section 6, and T > 2.

Once again, attackers may counterbalance this processing cost with the tem-

porary storage of rows that can be recomputed from a same sentinel, or of a same

row that is required multiple times during the attack. However, the attackers’

ability of doing so while keeping the memory usage around R/2 is limited by the

fact that this sentinel-based strategy commits a huge part of the attack’s memory

budget to the storage of all rows from V 0
1 . Diverting part of this budget to the

temporary storage of rows, on the other hand, is similar to what is done in the

consumer-producer strategy itself, so the latter can be seen as an extreme case

of this approach.

On the other extreme, the memory budget could be diverted to raise the

number of sentinels and, thus, reduce α. As a drawback, the attack would have

to deal with a dependence graph displaying extra layers, since then V 0
1 would

not be fully covered. This would lead to a higher cost for the computation of

each row from V 0
2 , counterbalancing to some extent the gains obtained with the

extra sentinels. For example, suppose the attacker (1) stores only R/4 out of the

R/2 rows from V 0
1 , using the remainder budget of R/4 rows to make ε = R/8

sentinels, and then (2) places ε∗ = R/32 sentinels (i.e., R/16 rows) along the

part of V 0
1 that is not covered anymore, thus keeping the total memory usage at

R/2 + R/16 rows as in the previous examples. In this scenario, the number of

rows from V 0
2 involved in each iteration of V 2

2 should drop to 24(R/4ε′)3 = 213

if we assume once again that the sentinels are equally distributed through all

levels (i.e., for ε′ = ε/4). However, recovering a row from V 0
2 should not take only

R/4ε′ = 23 executions of CL anymore, but roughly (R/4ε′) · (R/4ε∗) = 25 due

to the recomputations of rows from V 0
1 . The processing cost for the whole V 2

2

would then be (218 · R/2)σ, which still is not lower than what is obtained with

the consumer-producer strategy for R 6 217.

94

The low scalability of the sentinel-based strategy also impairs attacks with a

memory usage lower than R/2, since then the number of sentinels and coverage

of rows from V 0
1 would both drop. The same scalability issues apply to attempts

of recovering all rows from V 0
2 in parallel using different processing cores, as

suggested at the end of Section 5.1.4, given that the number of cores grows

exponentially with T .

5.2 Slow-Memory attacks

When compared to low-memory attacks, providing protection against slow-

memory attacks is a more involved task. This happens because the attacker acts

approximately as a legitimate user during the algorithm’s operation, keeping in

memory all information required. The main difference resides on the bandwidth

and latency provided by the memory device employed, which ultimately impacts

the time required for testing each password guess.

Lyra2, similarly to scrypt, explores the properties of low-cost memory devi-

ces by visiting memory positions following a pseudorandom pattern during the

Wandering phase. In particular, this strategy increases the latency of intrinsically

sequential memory devices, such as hard disks, especially if the attack involves

multiple instances simultaneously accessing different memory sections. Further-

more, as discussed in Section 4.5, this pseudorandom pattern combined with a

small C parameter may also diminish speedups obtained from mechanisms such

as caching and prefetching, even when the attacker employs (low-cost) random-

access memory chips. Even though this latency may be (partially) hidden in a

parallel attack by prefetching the rows needed by one thread while another thread

is running, at least the attacker would have to pay the cost of frequently changing

the context of each thread. We notice that this approach is particularly harm-

ful against older model GPUs, whose internal structure were usually optimized

95

toward deterministic memory accesses to small portions of memory (NVIDIA,

2014, Sec. 5.3.2).

When compared with scrypt, a slight improvement introduced by Lyra2

against such attacks is that the memory positions are not only repeatedly read,

but also written. As a result, Lyra2 requires data to be repeatedly moved up

and down the memory hierarchy. The overall impact of this feature on the per-

formance of a slow-memory attack depends, however, on the exact system ar-

chitecture. For example, it is likely to increase traffic on a shared memory bus,

while caching mechanisms may require a more complex circuitry/scheduling to

cope with the continuous flow of information from/to a slower memory level. This

high bandwidth usage is also likely to hinder the construction of high-performance

dedicated hardware for testing multiple password in parallel.

Another feature of Lyra2 is the fact that, during the Wandering phase, the

columns of the most recently updated rows (M [prev0] and M [prev0]) are read in

a pseudorandom manner. Since these rows are expected to be in cache during a

regular execution of Lyra2, a legitimate user that configures C adequately should

be able to read these rows approximately as fast as if they were read sequentially.

An attacker using a platform with a lower cache size, however, should experience

a lower performance due to cache misses. In addition, this pseudorandom pattern

hinders the creation of simple pipelines in hardware for visiting those rows: even

if the attacker keeps all columns in fast memory to avoid latency issues, some

selection function will be necessary to choose among those columns on the fly.

Finally, in Lyra2’s design the sponge’s output is always XORed with the value

of existing rows, preventing the memory positions corresponding to those rows

from becoming quickly replaceable. This property is, thus, likely to hinder the

attacker’s capability of reusing those memory regions in a parallel thread.

Obviously, all features displayed by Lyra2 for providing protection against

96

slow-memory attacks may also impact the algorithm’s performance for legitimate

user. After all, they also interfere with the legitimate platform’s capability of

taking advantage of its own caching and pre-fetching features. Therefore, it is of

utmost importance that the algorithm’s configuration is optimized to the plat-

form’s characteristics, considering aspects such as the amount of RAM available,

cache line size, etc. This should allow Lyra2’s execution to run more smoothly in

the legitimate user’s machine while imposing more serious penalties to attackers

employing platforms with distinct characteristics.

5.3 Cache-timing attacks

A cache-timing attack is a type of side-channel attack in which the attacker is

able to observe a machine’s timing behavior by monitoring its access to cache me-

mory (e.g., the occurrence of cache-misses) (FORLER; LUCKS; WENZEL, 2013;

BERNSTEIN, 2005). This class of attacks has been shown to be effective, for

example, against certain implementations of the Advanced Encryption Standard

(AES) (NIST, 2001a) and RSA (RIVEST; SHAMIR; ADLEMAN, 1978), allowing

the recovery of the secret key employed by the algorithms (BERNSTEIN, 2005;

PERCIVAL, 2005).

In the context of password hashing, cache-timing attacks may be a threat

against memory-hard solutions that involve operations for which the memory

visitation order depends on the password. The reason is that, at least in theory,

a spy process that observes the cache behavior of the correct password may be

able to filter passwords that do not match that pattern after only a few iterations,

rather than after the whole algorithm is run (FORLER; LUCKS; WENZEL,

2013). Nevertheless, cache-timing attacks are unlikely to be a matter of great

concern in scenarios where the PHS runs in a single-user scenario, such as in local

authentication or in remote authentications performed in a dedicated server: after

97

all, if attackers are able to insert such spy process into these environments, it is

quite possible they will insert a much more powerful spyware (e.g., a keylogger

or a memory scanner) to get the password more directly.

On the other hand, cache-timing attacks may be an interesting approach in

scenarios where the physical hardware running the PHS is shared by processes of

different users, such as virtual servers hosted in a public cloud (RISTENPART

et al., 2009). This happens because such environments potentially create the

required conditions for making cache-timing measurements (RISTENPART et

al., 2009), but are expected to prevent the installation of a malware powerful

enough to circumvent the hypervisor’s isolation capability for accessing data from

different virtual machines.

In this context, the approach adopted in Lyra2 is to provide resistance against

cache-timing attacks only during the Setup phase, in which the indices of the rows

read and written are not password-dependent, while the Wandering and Wrap-

up phases are susceptible to such attacks. As a result, even though Lyra2 is not

completely immune to cache-timing attacks, the algorithm ensures that attackers

will have to run the whole Setup phase and at least a portion of the Wandering

phase before they can use cache-timing information for filtering guesses. There-

fore, such attacks will still involve a memory usage of at least R/2 rows or some

of the time-memory trade-offs discussed along Section 5.1.

The reasoning behind this design decision of providing partial resistance to

cache-timing attacks is threefold. First, as discussed in Section 5.2, making

password-dependent memory visitations is one of the main defenses of Lyra2

against slow-memory attacks, since it hinders caching and pre-fetching mecha-

nisms that could accelerate this threat. Therefore, resistance against low-memory

attacks and protection against cache-timing attacks are somewhat conflicting re-

quirements. Since low- and slow-memory attacks are applicable to a wide range

98

of scenarios, from local to remote authentication, it seems more important to

protect against them than completely preventing cache-timing attacks.

Second, for practical reasons (namely, scalability) it may be interesting to

offload the password hashing process to users, distributing the underlying costs

among client devices rather than concentrating them on the server, even in the

case of remote authentication. This is the main idea behind the server-relief

protocol described in (FORLER; LUCKS; WENZEL, 2013), according to which

the server sends only the salt to the client (preferably using a secure channel),

who responds with x = PHS(pwd, salt); then, the server only computes locally

y = H(x) and compares it to the value stored in its own database. The result

of this approach is that the server-side computations during authentication are

reduced to execution of one hash, while the memory- and processing-intensive

operations involved in the password hashing process are performed by the client,

in an environment in which cache-timing is probably a less critical concern.

Third, as discussed in (MOWERY; KEELVEEDHI; SHACHAM, 2012), re-

cent advances in software and hardware technology may (partially) hinder the

feasibility of cache-timing and related attacks due to the amount of “noise” con-

veyed by their underlying complexity. This technological constraint is also rein-

forced by the fact that security-aware cloud providers are expected to provide

countermeasures against such attacks for protecting their users, such as (see (RIS-

TENPART et al., 2009) for a more detailed discussion): ensuring that processes

run by different users do not influence each other’s cache usage (or, at least, that

this influence is not completely predictable); or making it more difficult for an

attacker to place a spy process in the same physical machine as security-sensitive

processes, in especial processes related to user authentication. Therefore, even if

these countermeasures are not enough to completely prevent such attacks from

happening, the added complexity brought by them may be enough to force the

99

attacker to run a large portion of the Wandering phase, paying the corresponding

costs, before a password guess can be reliably discarded.

5.4 Garbage-Collector attacks

A garbage-collector attack is another type of side-channel attack, in which

the attacker has access to the internal memory of the target’s machine after a

legitimate password hashing process is finished (FORLER et al., 2014). In this

context, the goal of the attacker is to find a valid password candidate based on

the collected data, instead of trying all the possibilities (brute-force attack), ex-

ploiting the machine’s memory management mechanisms as applied to the PHS’s

internal state and/or password-dependent values written in memory (FORLER

et al., 2014).

Specifically in the context of password hashing, garbage-collector attacks are a

threat especially against memory-hard solutions that do not overwrite its internal

memory after filling it with password-dependent data. In this case, the memory

parts that may have been written on disk (e.g., due to memory swapping) or are

still in RAM leave a useful trace that can be used in the discovery of the original

password: attackers can execute the password ahshing over candidate passwords

until they obtain the same memory section resulting from the correct password;

if the contents of those regions match, then the password is probably correct and

the whole hashing process should proceed until the end; otherwise, the test can

be aborted earlier.

Albeit interesting and potentially powerful, the uefulness of such attacks

against memory-hard solutions that overwrite its internal memory is quite limited.

After all, when the memory visitation and overwritting is password-dependent,

as in the case of Lyra2, the attacker cannot determine with a reasonable degree

100

of certainty how many times a given memory region has been overwritten until

a given point of the processing. Hence, even if some speficic memory region is

available due to swapping, it is not easy to determine when the corresponding

value was obtained unless the entirety of the algorithm is run, which prevents

the early abortion of the test. Therefore, since Lyra2 overwrites the sponge state

multiple times and rewrite the memory matrix’s rows and columns again and

again, garbage-collector attacks do not apply to the algorithm, a claim that is

corroborated by third-party analysis (FORLER et al., 2014).

5.5 Security analysis of BlaMka.

Whereas the previous analysis does not depend on the underlying sponge,

it is important also to evaluate the security of BlaMka as opposed to Blake2b,

in especial considering that the latter has been intensively analyzed during the

SHA-3 competition. Fortunately, in terms of security, a preliminary analysis of

the tls(x, y) = x + y + 2 · lsw(x) · lsw(y) operation adopted in BlaMka’s Gtls

permutation indicates that its diffusion capability is at least as high as that

provided by the simple word-wise addition employed by Blake2b’s original G

function. This observation comes from the assessment of XOR-differentials over

tls, defined in (AUMASSON; JOVANOVIC; NEVES, 2015) as:

Definition 1. Let f : F2n
2 7→ Fn2 be a vector Boolean function and let α, β and

γ be n-bit sized XOR-differences. We call (α, β) 7→ γ a XOR-differential of f

if there exist n-bit strings x and y that satisfy f ′(x ⊕ α, y ⊕ β) = f ′(x, y) ⊕ γ.

Otherwise, if no such n-bit strings x and y exist, we call (α, β) 7→ γ an impossible

XOR-differential of f .

Specifically, conducting an exhaustive search for n = 8, we found 4 XOR-

differentials that hold for all 65536 pairs (x, y), both for tls and for the addition

101

operation: (0x00, 0x00) 7→ 0x00, (0x80, 0x80) 7→ 0x00, (0x00, 0x80) 7→ 0x80,

and (0x80, 0x00) 7→ 0x80 (in hexadecimal notation). Hence, the most common

XOR-differentials have the same probability for both tls and regular additions.

However, when we analyze the XOR-differentials with second highest proba-

bility, we observe that the addition operation displays 168 XOR-differentials that

hold for 50% of all (x, y) pairs, while the tls operation hereby described has only

48 of such XOR-differentials. XOR-differentials with lower, but still high pro-

babilities are also less frequent for tls than for an addition — e.g., 288 instead

of 3024 differentials that hold for 25% of all (x, y) pairs, — although the former

displays differentials with probabilities that do not appear in the latter — e.g.,

12 differentials that hold for 19200 out of the 65536 (x, y) pairs, the third highest

differential probability for tls.

Therefore, although tests with a larger number of bits would be required to

confirm this analysis, by adopting the multiplication-hardened tls operation as

part of its underlying Gtls permutation, BlaMka is expected to be at least as

secure as Blake2b when it comes to its diffusion capability. Interestingly, given

the similarity between Gtls and NORX’s own structure, it is quite possible that

analyses of this latter scheme can also apply to the construction hereby described.

5.6 Summary

This chapter provided a security analysis of Lyra2, showing how it’s design

thwarts different attack strategies. Table 2 summarizes the discussion, provi-

ding a comparison with other relevant Password Hashing Schemes available in

the literature and discussed in Section 3. We note that, among the results

appearing in this table, only the data related to Lyra2 were actually analyzed

and presented in this work, while the remainder of the data shown were col-

102

Algorithm
Time-Memory trade-offs Slow Side Hardware Garbage

TMTO Memory Channel and GPUs Collector

Argon2i
for R′ = R/6

— 3 3 3
≈ 215.5 · T ·R

Argon2d
for R′ = R/6

3 7 3 3
≈ 219.6 · T ·R

battcrypt — 3 7 3 3

Catena
O(1)

— 3 3 3
Θ(RT+1)

Lyra2 [ours]
for R′ = R/2n+2, where n ≥ 0

3 ! 3 3
O(22nTR2+n/2), for n� 1

POMELO — 3 ! 3 3

yescrypt
O(1)

3 7 3 32

O(RT+1)

scrypt
O(1)

3 7 ! 7
O(R2)

3- Has protection; 7- Has no protection; ! - Partial protection; — - Nothing declared.

Table 2: Security overview of the PHSs considered the state of art.

lected on the reference guides, manuals and articles describing and/or analy-

zing these solutions, including also third-party analysis. Hence, we refer the

interested reader to the original sources for details on each of these algorithms:

Argon2 (BIRYUKOV; DINU; KHOVRATOVICH, 2016), battcrypt (THOMAS,

2014), Catena(FORLER; LUCKS; WENZEL, 2013), Pomelo (WU, 2015), yes-

crypt (PESLYAK, 2015), scrypt (PERCIVAL, 2009), and garbage collector at-

tacks (FORLER et al., 2014).

2Provides protection when in its “read-write” mode (YESCRYPT_RW) (FORLER et al., 2014).

103

6 PERFORMANCE FOR DIFFERENT
SETTINGS

In our assessment of Lyra2’s performance, we used an SSE-enabled imple-

mentation of Blake2b’s compression function (AUMASSON et al., 2013) as the

underlying sponge’s f function of Algorithm 5. According to our tests, using SSE

(Streaming SIMD Extensions, where SIMD stands for Single Instruction, Mul-

tiple Data) instructions allow performance gains of 20% to 30% in comparison

with non-SSE settings, so we only consider such optimized implementations in

this document.

One important note about this implementation is that, as discussed in Section

4.4, the least significant 512 bits of the sponge’s state are set to zeros, while the

remainder 512 bits are set to Blake2b’s Initialization Vector. Also, to prevent the

IV from being overwritten by user-defined data, the sponge’s capacity c employed

when absorbing the user’s input (line 4 of Algorithm 5) is kept at 512 bits,

but reduced to 256 bits in the remainder of the algorithm to allow a higher

bitrate (namely, of 768 bits) during most of its execution. The implementations

employed, as well as test vectors, are available at <www.lyra2.net>.

6.1 Benchmarks for Lyra2

The results obtained with a SSE-optimized single-core implementation of

Lyra2 are illustrated in Figure 14. The results depicted correspond to the average

www.lyra2.net

104

execution time of Lyra2 configured with C = 256, ρ = 1, b = 768 bits (i.e., the

inner state has 256 bits), and different T and R settings, giving an overall idea of

possible combinations of parameters and the corresponding usage of resources.

As shown in this figure, Lyra2 is able to execute in: less than 1 s while using

up to 400 MB (with R = 214 and T = 5) or up to 1 GB of memory (with

R ≈ 4.2 · 104 and T = 1); or in less than 5 s with 1.6 GB (with R = 216 and

T = 6). All tests were performed on an Intel Xeon E5-2430 (2.20 GHz with 12

Cores, 64 bits) equipped with 48 GB of DRAM, running Ubuntu 14.04 LTS 64

bits. The source code was compiled using gcc 4.9.2.

The same Figure 14 also compares Lyra2 with the scrypt “SSE-enabled” im-

plementation publicly available at <www.tarsnap.com/scrypt.html>, using the pa-

rameters suggested by scrypt’s author in (PERCIVAL, 2009), namely, b = 8192

and p = 1. The results obtained show that, to achieve a memory usage and

processing time similar to that of scrypt, Lyra2 could be configured with T ≈ 6.

Figure 14: Performance of SSE-enabled Lyra2, for C = 256, ρ = 1, p = 1, and
different T and R settings, compared with SSE-enabled scrypt.

www.tarsnap.com/scrypt.html

105

We also performed tests aiming to compare the performance of Lyra2 and the

other 5 memory-hard PHC finalists: Argon2, battcrypt, Catena, POMELO, and

yescrypt. Parameterizing each algorithm to ensure a fair comparison between

them is not an obvious task, however, because the amount of resources taken by

each PHS in a legitimate platform is a user-defined parameter chosen to influence

the cost of brute-force guesses. Hence, ideally one would have to find the parame-

ters for each algorithm that normalize the costs for attackers, for example in terms

of energy and chip area in hardware, the cost of memory-processing trade-offs in

software, or the throughput in highly parallel platforms such as GPUs.

In the absence of a complete set of optimized implementations for gathering

such data, a reasonable approach is to consider the minimum parameters sugges-

ted by the authors of each scheme: even though this analysis does not ensure that

the attack costs are similar to all schemes, it at least shows what the designers

recommend as the bare minimum cost for legitimate users. The results, which ba-

sically confirm existing analysis done in (BROZ, 2014), are depicted in Figure 15,

which shows that Lyra2 is a very competitive solution in terms of performance.

Figure 15: Performance of SSE-enabled Lyra2, for C = 256, ρ = 1, p = 1, and
different T and R settings, compared with SSE-enabled scrypt and memory-hard
PHC finalists with minimum parameters.

106

Another normalization can be made if we consider that, in a nutshell, a

memory-hard PHS consists of an iterative program that initializes and revisits

several memory positions. Therefore, one can assess each algorithm’s perfor-

mance when they are all parameterized to make the same number of calls to the

underlying non-invertible (possible cryptographic) function. The goal with this

normalization is to evaluate how efficiently the underlying primitive is employed

by the scheme, giving an overall idea of its throughput. It also provides some

insight on how much that primitive should be optimized to obtain similar pro-

cessing times for a given memory usage, or even if it is worthy replacing that

primitive by a faster algorithm (assuming that the scheme is flexible enough to

allow users to do so).

The benchmark results are shown in Figure 16, in which lines marked with the

same symbol (e.g., � or •) denote algorithms configured with a similar number

of calls to the underlying function. The exact choice of parameters in this figure

Figure 16: Performance of SSE-enabled Lyra2, for C = 256, ρ = 1, p = 1
and different T and R settings, compared with SSE-enabled scrypt and memory-
hard PHC finalists with a similar number of calls to the underlying function
(comparable configurations are marked with the same symbol, � or •).

107

Algorithm Calls to underlying primitive SIMD instructions
Argon2 2 · T ·M Yes
battcrypt {2bT/2c · [(T mod 2) + 2] + 1} ·M No
Catena1 (T + 1) ·M Yes
Lyra2 (T + 1) ·M Yes

POMELO
(
3 + 22T

)
·M No

yescrypt T ·M Yes

Table 3: PHC finalists: calls to underlying primitive in terms of their time and
memory parameters, T and M , and their implementations.

comes from Table 3, which shows how each memory-hard PHC finalist handles

the time- and memory-cost parameters (respectively, T and M), based on the

analysis of the documentation provided by their authors (PHC, 2013; PESLYAK,

2015; PHC wiki, 2014). The source codes were all compiled with the -O3 option

whenever the authors did not specify the use of another compilation flag. Once

again, Lyra2 displays a superior performance, which is a direct result of adopting

an efficient and reduced-round cryptographic sponge as underlying primitive.

One remark concerning these results is that, as also shown in Table 3, the

implementations of battcrypt and POMELO employed in the benchmarks do not

employ SIMD instructions, which means that the comparison is not completely

fair. Nevertheless, even if such advanced instructions are able to reduce their

processing times by half, their relative positions on the figure would not change.

In addition of these results, a third-party implementation (GONÇALVES,

2014) has shown that it is possible to reduce Lyra2’s processing time even more

in modern processors equipped with AVX2 (Advanced Vector Extensions 2) ins-

tructions . With that study, the authors produced a piece of code that runs

30% faster than our SSE-optimized implementation (GONÇALVES; ARANHA,

2005).
1The exact number of calls to the underlying cryptographic primitive in Catena is given by

equation (g − g0 + 1) · (T + 1) ·M , where g and g0 are, respectively, the current and minimum
garlic. However, since normally g = g0, here we use the simplified equation (T + 1) ·M .

108

6.2 Benchmarks for BlaMka.

In terms of performance, our analysis indicate that the throughput of BlaMka

when compared with Blake2b drops less in CPUs than in dedicated hardware,

meaning that it is more advantageous for regular users than it is for attackers.

This analysis is based on benchmarks of Blake2b’s G and BlaMka’s Gtls functions

performed in CPUs, comparing the results with hardware implementations made

by Jonatas F. Rossetti under the supervision of Prof. Wilson V. Ruggiero.

For all implementations, we measured the average throughput of one round

of G and Gtls (i.e., for 256 bits of input/output), which does not correspond to

the entire Blake2b or BlaMka algorithms but should be enough for a compara-

tive analysis between these permutation functions. In addition, for simplicity,

along the discussion we ignore ancillary (e.g, memory-related) operations that

should appear in any algorithm using either Blake2b or BlaMka as underlying

hash function. As later discussed in Section 6.3, this simplification leads to num-

bers implying an impact much more significant than those actually observed in

algorithms involving a large amount of memory-related operations, such as Lyra2

itself. Nevertheless, the resulting analysis is useful to evaluate how the adop-

tion of BlaMka or Blake2b as underlying hash function impacts the “processing”

portion of an algorithm’s total execution time.

Table 4 shows the benchmark results obtained with software implementations

of G and Gtls. All tests were performed on an Intel Xeon E5-2430 (2.20 GHz

with 12 Cores, 64 bits) equipped with 48 GB of DRAM and running Ubuntu

14.04 LTS 64 bits. The source code was compiled using gcc 4.9.3 with -O3 opti-

mization, and SIMD (Stands for Single Instruction, Multiple Data) instructions

were not used, in order to implement these functions in the most generic way

possible.

109

Microarchitecture
CPU

Model G Implem.
T. Power Max. Frequency Throughput Throughput

Family (W) (MHz) (Gbps) Ratio

Sandy Bridge
Intel

E5-2430
Blake2b Generic

95 22002 51.578 1
Xeon BlaMka Generic 21.465 0.416

Table 4: Data related of the tests performed in CPU, executing just one round
of G function (i.e., 256 bits of output).

As shown in Table 4’s rightmost column, BlaMka’s Gtls function has approxi-

mately 42% of the throughput capacity of the original Blake2b’s G permutation

function in CPUs. Hence, ignoring ancillary operations, any algorithm using

BlaMka as underlying hash function should observe a similar impact on its th-

roughput, whether it is a legitimate or attacker’s implementation.

The hardware descriptions for G and Gtls, on their turn, were made directly

from definition of the algorithms described on Figure 4, using basic combinational

and sequential components, such as registers, multiplexers, adders, multipliers,

and 64-bit XORs. The rotation and shift left operations present on BlaMka were

implemented as simple changes in wire connections, as it is known in advance how

many bits should be rotated and left shifted. Two versions were developed for

the purposed of benchmarking. In the first, denoted simply Generic”, no special

adder or multiplier were used, leaving for the implementation tools the task of

choosing some special algorithm. In the second, denoted “Opt” to indicate further

optimizations, the hardware descriptions were made using specific combinational

multipliers — namely, Dadda Multipliers (DADDA, 1965; DADDA, 1976) — and

Carry Save Adders, using registers along the critical path to reduce latency.

Both Generic and Opt descriptions were implemented in FPGA using Xilinx

ISE Design Suite (XILINX, 2013) and Xilinx Vivado Design Suite (XILINX,

2016) for multiple FPGA families of different fabrication technologies (Tables 5

and 6). For the implementations on ASICs, the Synopsys Design Compiler tool
2During the tests the TurboBoost was turned off.

110

(SYNOPSYS, 2010) was used in a 90nm cell library (Table 6). These tools were

used with default implementation parameters, aiming to achieve the most generic

results possible.

Tables 5 and 6 show the results obtained for FPGA and ASICs implemen-

tations, respectively. In those tables, one can see that the throughput ratio of

BlaMka instead of Blake2b is in most cases worst than the one obtained with

CPUs. Namely, in the FPGA-based implementations, BlaMka’s throughput from

29.5% to 58.9% of Blake2b’s throughput instead of 42% observed in software, but

in 9 out of 12 them BlaMka’s multiplication-hardened permutation was higher

on hardware than on software. The ASICs’ implementations, on the other hand,

could cope considerably better with the Gtls structure, so BlaMka’s throughput

became 45.3% to 89.5% of Blake2b’s in this platform.

Nevertheless, in practice we need to take account of the area employed by the

implementations, since, from an attackers’ perspective, doubling the area of one

implementation only makes sense if the resulting throughput more than doubles;

otherwise, it would be more beneficial to have two instances of the algorithm

running in parallel testing different passwords, as this would result in twice as

much area with twice the throughput. The rightmost column of Tables 5 and 6,

the “Relative Throughput”, take this observation into account, as they indicate

how much throughput is lost with the adoption of BlaMka instead of Blake2b

assuming the same amount of silicon area is available for implementing both

algorithms. Specifically, BlaMka’s relative throughput ranges from 4% to 38.3% of

the throughput observed with Blake2b, remaining, thus, below the 42% obtained

in software. Therefore, according to this analysis, the adoption of BlaMka as

underlying sponge by legitimate users with software-based implementations of

the algorithm does improve defense against attackers with access to dedicated

hardware.

111

FPGA (ISE Design Suite)

Technology
FPGA

G Implem.
Area T. Power Max. Frequency Throughput Relative

Family Slices Ratio (mW) (MHz) Gbps Ratio Throughput

65nm Virtex 5
Blake2b Generic 237 1 1529 257.003 4.112 1 1
BlaMka Generic 383 1.616 1280 75.689 1.211 0.295 0.182
BlaMka Opt 2030 8.565 1511 88.511 1.416 0.344 0.040

28nm Kintex 7
Blake2b Generic 359 1 372 364.299 5.829 1 1
BlaMka Generic 433 1.206 232 109.397 1.750 0.300 0.249
BlaMka Opt 2306 6.423 463 142.450 2.279 0.391 0.061

45nm Spartan 6
Blake2b Generic 239 1 45 141.663 2.267 1 1
BlaMka Generic 206 0.862 94 46.757 0.748 0.330 0.383
BlaMka Opt 1592 6.661 327 104.373 1.336 0.589 0.088

FPGA (Vivado Design Suite)

Technology
FPGA

G Implem.
Area T. Power Max. Frequency Throughput Relative

Family Slices Ratio (mW) (MHz) Gbps Ratio Throughput

16nm
Kintex Blake2b Generic 144 1 690 500.250 8.004 1 1
Ultra BlaMka Generic 210 1.458 692 167.842 2.685 0.335 0.230

SCALE+ BlaMka Opt 1216 8.444 766 194.818 3.117 0.389 0.046

20nm
Kintex Blake2b Generic 148 1 958 280.741 4.492 1 1
Ultra BlaMka Generic 218 1.473 956 99.433 1.591 0.354 0.240

SCALE BlaMka Opt 1184 8.000 1024 135.538 2.169 0.483 0.060

28nm Virtex 7
Blake2b Generic 139 1 273 219.443 3.511 1 1
BlaMka Generic 188 1.353 276 100.291 1.605 0.457 0.338
BlaMka Opt 994 7.151 317 84.545 1.353 0.385 0.054

Table 5: Data related of the initial tests performed in FPGA, executing just one
round of G function (i.e., 256 bits of output).

FPGA (ISE Design Suite)

Technology
FPGA

G Implem.
Area T. Power Max. Frequency Throughput Relative

Family Slices Ratio (mW) (MHz) Gbps Ratio Throughput

90nm Spartan 3E
Blake2b Generic 508 1 162 98.097 1.570 1 1
BlaMka Generic 787 1.549 159 44.470 0.711 0.453 0.292
BlaMka Opt 3567 7.022 160 57.894 0.741 0.472 0.067

ASIC (Synopsys Design Compiler)

Technology Family G Implem.
Area T. Power Max. Frequency Throughput Relative

µm2 Ratio (µW) (MHz) Gbps Ratio Throughput

90nm
SAED Blake2b Generic 40191 1 222 239.808 3.837 1 1
EDK BlaMka Generic 107088 2.664 485 214.592 3.433 0.895 0.336
90nm BlaMka Opt 142911 3.556 637 245.700 3.145 0.820 0.231

Table 6: Data related of the initial tests performed in dedicated hardware (that
present advantage against CPU), executing just one round of G function (i.e.,
256 bits of output).

112

6.3 Benchmarks for Lyra2 with BlaMka

Since BlaMka includes a larger number of operations than Blake2b, it is natu-

ral that the performance of Lyra2 when it employs BlaMka instead of Blake2b as

underlying permutation will be lower than reported in Section 6.1; nevertheless,

the impact is unlikely to be as high as observed in Section 6.2, since memory-

related operations play an important role in the algorithm’s total execution time.

To assess the impacts of BlaMka over Lyra2’s efficiency, we conducted some ben-

chmarks as described in what follows.

Figure 17 shows the results for Lyra2 configured with p = 1, comparing it

with the other memory-hard PHC finalists. As observed in this figure, Lyra2’s

performance remains quite competitive: for a given memory usage, Lyra2 is slower

than yescrypt and Argon2 configured with minimal settings, but remains faster

than yescrypt when both are configured to make the same number of calls to the

underlying function (i.e., for yescrypt with T = 2 and Lyra2 with T = 1).

Figure 17: Performance of SSE-enabled Lyra2 with BlaMka G function, for C =
256, ρ = 1, p = 1, and different T and R settings, compared with SSE-enabled
scrypt and memory-hard PHC finalists (configurations with a similar number of
calls to the underlying function are marked with the same symbol, �).

113

6.4 Expected attack costs

Considering that the cost of DDR3 SO-DIMM memory chips is currently

around U$8.6/GB (TRENDFORCE, 2015), Table 7 shows the cost added by

Lyra2 with T = 5 when an attacker tries to crack a password in 1 year using the

above reference hardware, for different password strengths — we refer the reader

to (NIST, 2011, Appendix A) for a discussion on how to compute the approximate

entropy of passwords.

These costs are obtained considering the total number of instances that need

to run in parallel to test the whole password space in 365 days and supposing that

testing a password takes the same amount of time as in our testbed. Notice that,

in a real scenario, attackers would also have to consider costs related to wiring

and energy consumption of memory chips, besides the cost of the processing cores

themselves.

We notice that if the attacker uses a faster platform (e.g., an FPGA or a

more powerful computer), these costs should drop proportionally, since a smaller

number of instances (and, thus, memory chips) would be required for this task.

Similarly, if the attacker employs memory devices faster than regular DRAM

(e.g., SRAM or registers), the processing time is also likely to drop, reducing the

number of instances required to run in parallel.

Nonetheless, in this case the resulting memory-related costs may actually

be significantly bigger due to the higher cost per GB of such memory devices.

Anyhow, the numbers provided in Table 7 are not intended as absolute values,

but rather a reference on how much extra protection one could expect from using

Lyra2, since this additional memory-related cost is the main advantage of any

PHS that explores memory usage when compared with those that do not.

114

Password Memory usage (MB) for T = 1 Memory usage (MB) for T = 5

entropy (bits) 200 400 800 1,600 200 400 800 1,600

35 315.1 1.3k 5.0k 20.1k 917.8 3.7k 14.7k 59.1k

40 10.1k 40.2k 160.7k 642.9k 29.4k 117.7k 471.9k 1.9M

45 322.7k 1.3M 5.1M 20.6M 939.8k 3.8M 15.1M 60.5M

50 10.3M 41.2M 164.5M 658.3M 30.1M 120.6M 483.2M 1.9B

55 330.4M 1.3B 5.3B 21.1B 962.4M 3.9B 15.5B 62.0B

Where: k (kilo) = ×1, 000; M (Million) = ×1, 000, 000; B (Billion) = ×1, 000, 000, 000.

Table 7: Memory-related cost (in U$) added by the SSE-enable version of Lyra2
with T = 1 and T = 5, for attackers trying to break passwords in a 1-year period
using an Intel Xeon E5-2430 or equivalent processor.

Finally, when compared with existing solutions that do explore memory usage,

Lyra2 is advantageous due to the elevated processing costs of attack venues in-

volving time-memory trade-offs, effectively discouraging such approaches.

Indeed, from Equation 5.8 and for T = 5, the processing cost of an attack

against Lyra2 using half of the memory defined by the legitimate user would be

O((3/2)2TR2), which translates to (3/2)2·5 · (214)2 ≈ 234σ if the algorithm opera-

tes regularly with 400 MB, or (3/2)2·5 · (216)2 ≈ 238σ for a memory usage of 1.6

GB. For the same memory usage settings, the total cost of a memory-free attack

against scrypt would be approximately (215)2/2 = 229 and (217)2/2 = 233 calls

to BlockMix , whose processing time is approximately 2σ for the parameters em-

ployed in our experiments. As expected, such elevated processing costs resulting

from this small memory usage reduction are prone to discourage attack venues

that try to avoid the memory costs of Lyra2 by means of extra processing.

6.5 Summary

This chapter discussed the performance of Lyra2, showing that it is quite

competitive with other PHS solutions considered among the state-of-the-art, even

surpassing some of them, allowing legitimate users to use a large amount of

memory while keeping the algorithm’s execution time within reasonable levels.

115

This positive result is, at least in part, is due to the adoption of a reduced-

round cryptographic sponge as underlying function, which allows more memory

positions to be covered in a same amount of time than what would be possible

with the application of a full-round sponge. The use of a higher bitrate during

the most of the algorithm’s execution (768 bits in our tests) also contributes to

this higher speed without decreasing its security against possible cryptanalytic

attacks to a low level, as even so the sponge’s capacity can be kept quite high

(256 bits in our tests).

The choice of software-oriented cryptographic sponges is similarly important,

as it not only leads to high performance, but also gives more advantage to legiti-

mate users than to attackers.

Finally, Lyra2’s memory matrix was designed to allows legitimate users to

take advantage of memory hierarchy features, such as caching and prefetching,

which optimizes the portion of the execution time related to memory operati-

ons even with common hardware available in software-oriented platforms. These

properties can also be combined with optimization strategies from modern proces-

sors, such as vectorized instructions (e.g., SSE and AVX). The end result is a fast

and flexible design, which leads to a considerable cost of password-cracking hard-

ware, comparable (and not uncommonly superior) to the best results available in

the current state-of-the-art.

116

7 FINAL CONSIDERATIONS

In this document, we presented Lyra2, a password hashing scheme (PHS)

that allows legitimate users to fine tune memory and processing costs according

to the desired level of security and resources available in the target platform. For

achieving this goal, Lyra2 builds on the properties of sponge functions operating in

a stateful mode, creating a strictly sequential process. Indeed, the whole memory

matrix of the algorithm can be seen as a huge state, which changes together with

the sponge’s internal state.

The ability to control Lyra2’s memory usage allows legitimate users to thwart

attacks using parallel platforms. This can be accomplished by raising the total

memory required by the several cores beyond the amount available in the attac-

ker’s device. In summary, the combination of a strictly sequential design, the high

costs of exploring time-memory trade-offs, and the ability to raise the memory

usage beyond what is attainable with similar-purpose solutions (e.g., scrypt) for a

similar security level and processing time make Lyra2 an appealing PHS solution.

7.1 Publications and other results

The following adoptions, publications, presentations, submissions and envisi-

oned papers are a direct or indirect result of the research effort carried out during

this thesis:

117

• PHC special recognition: Lyra2 received a special recognition for its elegant

sponge-based design, and alternative approach to side-channel resistance

combined with resistance to slow-memory attacks (PHC, 2015b).

• BlaMka’s adoption: the winner of the PHC, Argon2, adopts BlaMka by de-

fault as its permutation function (BIRYUKOV; DINU; KHOVRATOVICH,

2016).

• Lyra2’s adoptions : the Vertcoin electronic currency announced that it is mi-

grating from scrypt to Lyra2 due to the excellent performance against cus-

tom mining hardware, as well as to the latter’s ability to fine tune memory

usage and processing time Lyra2 (A432511, 2014; DAY, 2014). Further-

more, a few months ago one of the major bitcoin mining software on GPU,

the Sgminer, added support to Lyra2 in its distribution package (CRYPTO

MINING, 2015).

• Journal Articles : in (ALMEIDA et al., 2014), we present the Lyra algo-

rithm, describing the preliminary ideas that gave rise to Lyra2; in (AN-

DRADE et al., 2016), we describe Lyra2 and provide a brief security and

performance analysis of the algorithm.

• Extended abstract : in (ANDRADE; SIMPLICIO JR, 2014b), we present

the initial ideas and results of Lyra2, and took the opportunity of the

event to discuss these results with other graduate students from the gra-

duate program of Electrical Engineering (Computer Engineering area) at

Escola Politecnica; in (ANDRADE; SIMPLICIO JR, 2014a), we gave an

oral presentation at LatinCrypt’14 with some preliminary results; and in

(ANDRADE; SIMPLICIO JR, 2016) we present the current status of our

project.

• Award : recently, we received a best PhD project award due Lyra2’s design

118

and analysis (ANDRADE; SIMPLICIO JR, 2016; ICISSP, 2016).

7.2 Future works

As future work, we plan to provide a more detailed performance and security

analysis of Lyra2 with different underlying sponges and in different platforms.

Among those sponges, in especial we intend to evaluate multiplication-hardened

solutions, including BlaMka, since this kind of solutions would increase the pro-

tections against attacks performed with dedicated hardware.

Another interesting subject of research involves adapting Lyra2’s design to

allow parallel tasks during the password hashing process. This approach would

allow legitimate users to take advantage of multi-core architectures (either in CPU

or in GPU) for accelerating the password hashing process in their own platforms

and, hence, potentially raise the memory usage for some target processing time.

Finally, we can also evaluate the consequences to adopt a password indepen-

dent approach on the Lyra2 structure, aiming make it totally resistant against

cache-timing attacks, evaluating the impacts of such approach when experimen-

tally performing a slow-memory attack.

119

REFERENCES

A432511. PoW Algorithm Upgrade: Lyra2 – Vertcoin. 2014. <https:
//vertcoin.org/pow-algorithm-upgrade-lyra2/>. Accessed: 2015-05-06.

ALMEIDA, L. C.; ANDRADE, E. R.; BARRETO, P. S. L. M.; SIMPLICIO
JR, M. A. Lyra: Password-Based Key Derivation with Tunable Memory
and Processing Costs. Journal of Cryptographic Engineering, Springer
Berlin Heidelberg, v. 4, n. 2, p. 75–89, 2014. ISSN 2190-8508. See also
<http://eprint.iacr.org/2014/030>.

ANDRADE, E. R.; SIMPLICIO JR, M. A. Lyra2: a password hashing
schemes with tunable memory and processing costs. 2014. Third International
Conference on Cryptology and Information Security in Latin America,
LATINCRYPT’14. Florianópolis, Brazil.<http://latincrypt2014.labsec.ufsc.br/>.
Accessed: 2015-05-06.

. Lyra2: Um Esquema de Hash de Senhas com custos de memória
e processamento ajustáveis. São Paulo, SP, Brazil: III WPG-EC. <http:
//www2.pcs.usp.br/wpgec/2014/index.htm>. Accessed: 2016-04-20., 2014. 53-55 p.

. Lyra2: Efficient Password Hashing with high security against Time-
Memory Trade-Offs. In: INSTITUTE FOR SYSTEMS AND TECHNOLOGIES
OF INFORMATION. Doctoral Consortium – Proceedings of 2nd International
Conference on Information Systems Security and Privacy, ICISSP 2016. Rome,
Italy: INSTICC. <http://www.icissp.org/?y=2016>. Accessed: 2016-04-20., 2016.

ANDRADE, E. R.; SIMPLICIO JR, M. A.; BARRETO, P. S. L. M.; SANTOS,
P. C. F. d. Lyra2: efficient password hashing with high security against
time-memory trade-offs. IEEE Transactions on Computers, PP, n. 99, 2016.
ISSN 0018-9340. See also <http://eprint.iacr.org/2015/136>.

ANDREEVA, E.; MENNINK, B.; PRENEEL, B. The Parazoa Family:
Generalizing the Sponge Hash Functions. 2011. Cryptology ePrint Archive,
Report 2011/028. <http://eprint.iacr.org/2011/028>. Accessed: 2014-07-18.

AOSP. Android Security Overview. 2012. Android Open Source Project –
<http://source.android.com/tech/security/index.html>. Accessed: 2015-02-13.

Apple. iOS Security. U.S., 2012. <https://www.apple.com/br/ipad/business/docs/
iOS_Security_Oct12.pdf>. Accessed: 2015-06-08.

AUMASSON, J.-P.; FISCHER, S.; KHAZAEI, S.; MEIER, W.; RECHBERGER,
C. New features of latin dances: Analysis of Salsa, ChaCha, and Rumba. In:
Fast Software Encryption. Berlin, Heidelberg: Springer-Verlag, 2008. v. 5084, p.
470–488. ISBN 978-3-540-71038-7.

https://vertcoin.org/pow-algorithm-upgrade-lyra2/
https://vertcoin.org/pow-algorithm-upgrade-lyra2/
http://eprint.iacr.org/2014/030
http://latincrypt2014.labsec.ufsc.br/
http://www2.pcs.usp.br/wpgec/2014/index.htm
http://www2.pcs.usp.br/wpgec/2014/index.htm
http://www.icissp.org/?y=2016
http://eprint.iacr.org/2015/136
http://eprint.iacr.org/2011/028
http://source.android.com/tech/security/index.html
https://www.apple.com/br/ipad/business/docs/iOS_Security_Oct12.pdf
https://www.apple.com/br/ipad/business/docs/iOS_Security_Oct12.pdf

120

AUMASSON, J.-P.; GUO, J.; KNELLWOLF, S.; MATUSIEWICZ, K.;
MEIER, W. Differential and Invertibility Properties of BLAKE. In: HONG, S.;
IWATA, T. (Ed.). Fast Software Encryption. Berlin, Germany: Springer Berlin
Heidelberg, 2010, (Lecture Notes in Computer Science, v. 6147). p. 318–332.
ISBN 978-3-642-13857-7. See also <http://eprint.iacr.org/2010/043>.

AUMASSON, J.-P.; HENZEN, L.; MEIER, W.; PHAN, R. SHA-3 proposal
BLAKE (version 1.3). 2010. <https://131002.net/blake/blake.pdf>.

AUMASSON, J.-P.; JOVANOVIC, P.; NEVES, S. NORX: Parallel and Scalable
AEAD. In: KUTYLOWSKI, M.; VAIDYA, J. (Ed.). Computer Security –
ESORICS 2014. Berlin, Germany: Springer International Publishing, 2014,
(LNCS, v. 8713). p. 19–36. ISBN 978-3-319-11211-4. See also <https://norx.io/>.

. Analysis of NORX: Investigating Differential and Rotational Properties.
In: ARANHA, D. F.; MENEZES, A. (Ed.). Progress in Cryptology –
LATINCRYPT 2014. Berlin, Germany: Springer International Publishing,
2015, (LNCS, v. 8895). p. 306–324. ISBN 978-3-319-16294-2. See also
<https://eprint.iacr.org/2014/317>.

AUMASSON, J.-P.; NEVES, S.; WILCOX-O’HEARN, Z.; WINNERLEIN, C.
BLAKE2: simpler, smaller, fast as MD5. 2013. <https://blake2.net/>. Accessed:
2014-11-21.

BELLARE, M.; RISTENPART, T.; TESSARO, S. Multi-instance Security
and Its Application to Password-Based Cryptography. In: SAFAVI-NAINI,
R.; CANETTI, R. (Ed.). Advances in Cryptology – CRYPTO 2012. Berlin,
Germany: Springer Berlin Heidelberg, 2012, (LNCS, v. 7417). p. 312–329. ISBN
978-3-642-32008-8.

BERNSTEIN, D. The Salsa20 family of stream ciphers. In: ROBSHAW,
M.; BILLET, O. (Ed.). New Stream Cipher Designs. Berlin, Heidelberg:
Springer-Verlag, 2008. p. 84–97. ISBN 978-3-540-68350-6.

BERNSTEIN, D. J. Cache-timing attacks on AES. Chicago, 2005.
<http://cr.yp.to/antiforgery/cachetiming-20050414.pdf>. Accessed: 2014-07-01.

BERTONI, G.; DAEMEN, J.; PEETERS, M.; ASSCHE, G. V. Sponge
functions. 2007. (ECRYPT Hash Function Workshop 2007). <http:
//sponge.noekeon.org/SpongeFunctions.pdf>. Accessed: 2015-06-09.

. Cryptographic sponge functions – version 0.1. 2011. <http://sponge.
noekeon.org/CSF-0.1.pdf>. Accessed: 2015-06-09.

. The Keccak SHA-3 submission. 2011. Submission to NIST (Round 3).
<http://keccak.noekeon.org/Keccak-submission-3.pdf>. Accessed: 2015-06-09.

BIRYUKOV, A.; DINU, D.; KHOVRATOVICH, D. Argon2: the memory-
hard function for password hashing and other applications. v1.3 of argon2.
Luxembourg, 2016. <https://github.com/P-H-C/phc-winner-argon2/blob/master/
argon2-specs.pdf>. Accessed: 2016-04-20.

http://eprint.iacr.org/2010/043
https://131002.net/blake/blake.pdf
https://norx.io/
https://eprint.iacr.org/2014/317
https://blake2.net/
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://sponge.noekeon.org/SpongeFunctions.pdf
http://sponge.noekeon.org/SpongeFunctions.pdf
http://sponge.noekeon.org/CSF-0.1.pdf
http://sponge.noekeon.org/CSF-0.1.pdf
http://keccak.noekeon.org/Keccak-submission-3.pdf
https://github.com/P-H-C/phc-winner-argon2/blob/master/argon2-specs.pdf
https://github.com/P-H-C/phc-winner-argon2/blob/master/argon2-specs.pdf

121

BONNEAU, J.; HERLEY, C.; OORSCHOT, P. C. V.; STAJANO, F. The
Quest to Replace Passwords: A Framework for Comparative Evaluation of Web
Authentication Schemes. In: Security and Privacy (SP), 2012 IEEE Symposium
on. San Francisco, CA: IEEEXplore, 2012. p. 553–567. ISSN 1081-6011.

BROZ, M. Another PHC candidates “mechanical” tests – Public archives of PHC
list. 2014. <http://article.gmane.org/gmane.comp.security.phc/2237>. Accessed:
2014-11-27.

CAPCOM. Blanka – Capcom Database. 2015. <http://capcom.wikia.com/wiki/
Blanka>. Accessed: 2015-12-18.

CHAKRABARTI, S.; SINGBAL, M. Password-based authentication: Preventing
dictionary attacks. Computer, v. 40, n. 6, p. 68–74, june 2007. ISSN 0018-9162.

CHANG, S.; PERLNER, R.; BURR, W. E.; TURAN, M. S.; KELSEY,
J. M.; PAUL, S.; BASSHAM, L. E. Third-Round Report of the SHA-3
Cryptographic Hash Algorithm Competition. Washington, DC, USA: US
Department of Commerce, National Institute of Standards and Technology,
2012. <http://nvlpubs.nist.gov/nistpubs/ir/2012/NIST.IR.7896.pdf>. Accessed:
2015-03-06.

CHUNG, E. S.; MILDER, P. A.; HOE, J. C.; MAI, K. Single-Chip Heterogeneous
Computing: Does the Future Include Custom Logic, FPGAs, and GPGPUs?
In: Proc. of the 43rd Annual IEEE/ACM International Symposium on
Microarchitecture. Washington, DC, USA: IEEE Computer Society, 2010.
(MICRO’43), p. 225–236. ISBN 978-0-7695-4299-7.

CONKLIN, A.; DIETRICH, G.; WALZ, D. Password-based authentication:
A system perspective. In: Proc. of the 37th Annual Hawaii International
Conference on System Sciences (HICSS’04). Washington, DC, USA: IEEE
Computer Society, 2004. (HICSS’04, v. 7), p. 170–179. ISBN 0-7695-2056-1.
<http://dl.acm.org/citation.cfm?id=962755.963150>.

COOK, S. A. An Observation on Time-storage Trade off. In: Proc. of the 5th
Annual ACM Symposium on Theory of Computing (STOC’73). New York, NY,
USA: ACM, 1973. p. 29–33.

COX, B. TwoCats (and SkinnyCat): A Compute Time and Sequential
Memory Hard Password Hashing Scheme. v0. Chapel Hill, NC, 2014.
<https://password-hashing.net/submissions/specs/TwoCats-v0.pdf>. Accessed:
2014-12-11.

CREW, B. New carnivorous harp sponge discovered in deep sea.
Nature, 2012. Available online: <http://www.nature.com/news/
new-carnivorous-harp-sponge-discovered-in-deep-sea-1.11789>. Accessed:
2013-12-21.

CRYPTO MINING. Updated Windows Binary of sgminer 5.1.1 With Fixed
Lyra2Re Support – Crypto Mining Blog. 2015. <http://cryptomining-blog.

http://article.gmane.org/gmane.comp.security.phc/2237
http://capcom.wikia.com/wiki/Blanka
http://capcom.wikia.com/wiki/Blanka
http://nvlpubs.nist.gov/nistpubs/ir/2012/NIST.IR.7896.pdf
http://dl.acm.org/citation.cfm?id=962755.963150
https://password-hashing.net/submissions/specs/TwoCats-v0.pdf
http://www.nature.com/news/new-carnivorous-harp-sponge-discovered-in-deep-sea-1.11789
http://www.nature.com/news/new-carnivorous-harp-sponge-discovered-in-deep-sea-1.11789
http://cryptomining-blog.com/4535-updated-windows-binary-of-sgminer-5-1-1-with-fixed-lyra2re-support/

122

com/4535-updated-windows-binary-of-sgminer-5-1-1-with-fixed-lyra2re-support/>.
Accessed: 2015-05-06.

DADDA, L. Some schemes for parallel multipliers. Alta Frequenza, v. 34, p.
349–356, 1965.

. On parallel digital multipliers. Alta Frequenza, v. 45, p. 574–580, 1976.

DAEMEN, J.; RIJMEN, V. A new MAC construction alred and a specific
instance alpha-mac. In: GILBERT, H.; HANDSCHUH, H. (Ed.). Fast Software
Encryption – FSE’05. Berlin, Germany: Springer Berlin Heidelberg, 2005,
(LNCS, v. 3557). p. 1–17. ISBN 978-3-540-26541-2.

. Refinements of the alred construction and MAC security claims.
Information Security, IET, v. 4, n. 3, p. 149–157, 2010. ISSN 1751-8709.

DANDASS, Y. S. Using FPGAs to Parallelize Dictionary Attacks for Password
Cracking. In: Proc. of the 41st Annual Hawaii International Conference on
System Sciences (HICSS 2008). Waikoloa, HI: IEEEXplore, 2008. p. 485–485.
ISSN 1530-1605.

DAY, T. Vertcoin (VTC) plans algorithm change to Lyra2 – Coinbrief. 2014.
<http://coinbrief.net/vertcoin-algorithm-change-lyra2/>. Accessed: 2015-05-06.

DÜRMUTH, M.; GÜNEYSU, T.; KASPER, M. Evaluation of Standardized
Password-Based Key Derivation against Parallel Processing Platforms. In:
Computer Security – ESORICS 2012. Berlin, Germany: Springer Berlin
Heidelberg, 2012, (LNCS, v. 7459). p. 716–733. ISBN 978-3-642-33166-4.

DWORK, C.; NAOR, M.; WEE, H. Pebbling and Proofs of Work. In: Advances
in Cryptology – CRYPTO 2005. Berlin, Germany: Springer Berlin Heidelberg,
2005. (LNCS, v. 3621), p. 37–54. ISBN 978-3-540-28114-6.

DZIEMBOWSKI, S.; KAZANA, T.; WICHS, D. Key-Evolution Schemes
Resilient to Space-Bounded Leakage. In: Advances in Cryptology – CRYPTO
2011. Berlin, Germany: Springer Berlin Heidelberg, 2011. (LNCS, v. 6841), p.
335–353. ISBN 978-3-642-22791-2.

FLORENCIO, D.; HERLEY, C. A Large-scale Study of Web Password Habits.
In: Proceedings of the 16th International Conference on World Wide Web. New
York, NY, USA: ACM, 2007. p. 657–666. ISBN 978-1-59593-654-7.

FORLER, C.; LIST, E.; LUCKS, S.; WENZEL, J. Overview of the Candidates
for the Password Hashing Competition - And Their Resistance Against
Garbage-Collector Attacks. 2014. Cryptology ePrint Archive, Report 2014/881.
<http://eprint.iacr.org/2014/881>. Accessed: 2016-04-23.

FORLER, C.; LUCKS, S.; WENZEL, J. Catena: A Memory-Consuming
Password Scrambler. 2013. Cryptology ePrint Archive, Report 2013/525.
<http://eprint.iacr.org/2013/525>. Accessed: 2014-03-03.

http://cryptomining-blog.com/4535-updated-windows-binary-of-sgminer-5-1-1-with-fixed-lyra2re-support/
http://cryptomining-blog.com/4535-updated-windows-binary-of-sgminer-5-1-1-with-fixed-lyra2re-support/
http://coinbrief.net/vertcoin-algorithm-change-lyra2/
http://eprint.iacr.org/2014/881
http://eprint.iacr.org/2013/525

123

. The Catena Password Scrambler: Submission to the Password Hashing
Competition (PHC). v1. Weimar, Germany, 2014. <https://password-hashing.net/
submissions/specs/Catena-v1.pdf>. Accessed: 2014-10-09.

FOWERS, J.; BROWN, G.; COOKE, P.; STITT, G. A performance and energy
comparison of FPGAs, GPUs, and multicores for sliding-window applications.
In: Proc. of the ACM/SIGDA Internbational Symposium on Field Programmable
Gate Arrays (FPGA’12). New York, NY, USA: ACM, 2012. p. 47–56. ISBN
978-1-4503-1155-7.

GAJ, K.; HOMSIRIKAMOL, E.; ROGAWSKI, M.; SHAHID, R.; SHARIF, M. U.
Comprehensive Evaluation of High-Speed and Medium-Speed Implementations
of Five SHA-3 Finalists Using Xilinx and Altera FPGAs. 2012. Cryptology
ePrint Archive, Report 2012/368. <http://eprint.iacr.org/2012/368>. Accessed:
2014-03-07.

GONÇALVES, G. P. Github of Lyra2 implementation targeting modern CPU
architectures and compilers. 2014. Github ©. <https://github.com/eggpi/lyra2>.
Accessed: 2016-04-21.

GONÇALVES, G. P.; ARANHA, D. F. Implementação eficiente em software
da função lyra2 em arquiteturas modernas. In: Anais do XV Simpósio
Brasileiro em Segurança da Informação e de Sistemas Computacionais.
Florianópolis, SC, Brazil: Sociedade Brasileira de Computação (SBC),
<http://sbseg2015.univali.br/anais/AnaisSBSeg2015Completo.pdf>. Accessed:
2015-04-22, 2005. (SBSEG 2015), p. 388–397. ISSN 2176-0063.

GUO, J.; KARPMAN, P.; NIKOLIĆ, I.; WANG, L.; WU, S. Analysis
of BLAKE2. In: Topics in Cryptology (CT-RSA 2014). Berlin, Germany:
Springer International Publishing, 2014. (LNCS, v. 8366), p. 402–423. ISBN
978-3-319-04851-2. See also <https://eprint.iacr.org/2013/467>.

HALDERMAN, J.; SCHOEN, S.; HENINGER, N.; CLARKSON, W.; PAUL,
W.; CALANDRINO, J.; FELDMAN, A.; APPELBAUM, J.; FELTEN, E. Lest
we remember: cold-boot attacks on encryption keys. Commun. ACM, ACM,
New York, NY, USA, v. 52, n. 5, p. 91–98, maio 2009. ISSN 0001-0782.

HATZIVASILIS, G.; PAPAEFSTATHIOU, I.; MANIFAVAS, C. Password
Hashing Competition – Survey and Benchmark. 2015. Cryptology ePrint Archive,
Report 2015/265. <http://eprint.iacr.org/2015/265>. Accessed: 2015-05-18.

HERLEY, C.; OORSCHOT, P. V.; PATRICK, A. Passwords: If We’re So
Smart, Why Are We Still Using Them? In: Financial Cryptography and Data
Security. Berlin, Germany: Springer Berlin Heidelberg, 2009. (LNCS, v. 5628),
p. 230–237. ISBN 978-3-642-03548-7.

ICISSP. Previous Awards. 2016. International Conference on Information Systems
Security and Privacy – website. <http://www.icissp.org/PreviousAwards.aspx>.
2016-04-20.

https://password-hashing.net/submissions/specs/Catena-v1.pdf
https://password-hashing.net/submissions/specs/Catena-v1.pdf
http://eprint.iacr.org/2012/368
https://github.com/eggpi/lyra2
http://sbseg2015.univali.br/anais/AnaisSBSeg2015Completo.pdf
https://eprint.iacr.org/2013/467
http://eprint.iacr.org/2015/265
http://www.icissp.org/PreviousAwards.aspx

124

JI, L.; LIANGYU, X. Attacks on round-reduced BLAKE. 2009. Cryptology
ePrint Archive, Report 2009/238. <http://eprint.iacr.org/2009/238>. Accessed:
2014-06-22.

KAKAROUNTAS, A. P.; MICHAIL, H.; MILIDONIS, A.; GOUTIS, C. E.;
THEODORIDIS, G. High-Speed FPGA Implementation of Secure Hash
Algorithm for IPSec and VPN Applications. The Journal of Supercomputing,
v. 37, n. 2, p. 179–195, 2006. ISSN 0920-8542.

KALISKI, B. PKCS#5: Password-Based Cryptography Specification
version 2.0 (RFC 2898). RSA Laboratories. Cambridge, MA, USA, 2000.
<http://tools.ietf.org/html/rfc2898>. Accessed: 2014-03-12.

KELSEY, J.; SCHNEIER, B.; HALL, C.; WAGNER, D. Secure Applications of
Low-Entropy Keys. In: Proc. of the 1st International Workshop on Information
Security. London, UK, UK: Springer-Verlag, 1998. (ISW ’97), p. 121–134. ISBN
3-540-64382-6.

KHOVRATOVICH, D.; BIRYUKOV, A.; GROBSCHÄDL, J. Tradeoff
cryptanalysis of password hashing schemes. 2014. PasswordsCon’14. See also
<https://www.cryptolux.org/images/4/4f/PHC-overview.pdf>.

KHRONOS GROUP. The OpenCL Specification – Version 1.2. Beaverton,
OR, USA, 2012. <www.khronos.org/registry/cl/specs/opencl-1.2.pdf>. Accessed:
2014-11-11.

LENGAUER, T.; TARJAN, R. E. Asymptotically Tight Bounds on Time-space
Trade-offs in a Pebble Game. J. ACM, ACM, New York, NY, USA, v. 29, n. 4,
p. 1087–1130, oct 1982. ISSN 0004-5411.

MARECHAL, M. Advances in password cracking. Journal in Computer Virology,
Springer-Verlag, v. 4, n. 1, p. 73–81, 2008. ISSN 1772-9890.

MENEZES, A. J.; OORSCHOT, P. C. V.; VANSTONE, S. A.; RIVEST, R. L.
Handbook of Applied Cryptography. 1. ed. Boca Raton, FL, USA: CRC Press,
1996. ISSN 0-8493-8523-7.

MING, M.; QIANG, H.; ZENG, S. Security Analysis of BLAKE-32 Based
on Differential Properties. In: IEEE. 2010 International Conference on
Computational and Information Sciences (ICCIS). Chengdu, 2010. p. 783–786.

MOWERY, K.; KEELVEEDHI, S.; SHACHAM, H. Are AES x86 Cache
Timing Attacks Still Feasible? In: Proc.s of the 2012 ACM Workshop on Cloud
Computing Security Workshop (CCSW’12). New York, NY, USA: ACM, 2012.
p. 19–24. ISBN 978-1-4503-1665-1.

NEVES, S. Re: A review per day - Lyra2 – Public archives of PHC list. 2014.
<http://article.gmane.org/gmane.comp.security.phc/2045>. Accessed: 2014-12-20.

. Re: Compute time hardness (pwxform,blake,blamka). 2015. <http:
//article.gmane.org/gmane.comp.security.phc/2696>. Accessed: 2016-04-22.

http://eprint.iacr.org/2009/238
http://tools.ietf.org/html/rfc2898
https://www.cryptolux.org/images/4/4f/PHC-overview.pdf
www.khronos.org/registry/cl/specs/opencl-1.2.pdf
http://article.gmane.org/gmane.comp.security.phc/2045
http://article.gmane.org/gmane.comp.security.phc/2696
http://article.gmane.org/gmane.comp.security.phc/2696

125

NIST. Federal Information Processing Standard (FIPS 197) – Advanced
Encryption Standard (AES). National Institute of Standards and Technology,
U.S. Department of Commerce. Gaithersburg, MD, USA, 2001. <http:
//csrc.nist.gov/publications/fips/fips197/fips-197.pdf>. Accessed: 2016-04-15.

. Special Publication SP 800-38A – Recommendations for Block Cipher
Modes of Operation, Methods and Techniques. National Institute of Standards
and Technology, U.S. Department of Commerce. Gaithersburg, MD, USA, 2001.
<http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf>. Accessed:
2016-04-15.

. Federal Information Processing Standard (FIPS PUB 180-2)
– Secure Hash Standard (SHS). National Institute of Standards and
Technology, U.S. Department of Commerce. Gaithersburg, MD, USA,
2002. <http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf>. Accessed:
2015-06-25.

. Federal Information Processing Standard (FIPS PUB 198) – The
Keyed-Hash Message Authentication Code. National Institute of Standards
and Technology, U.S. Department of Commerce. Gaithersburg, MD, USA,
2002. <http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf>. Accessed:
2014-04-28.

. Special Publication 800-18 – Recommendation for Key Derivation
Using Pseudorandom Functions. National Institute of Standards and
Technology, U.S. Department of Commerce. Gaithersburg, MD, USA, 2009.
<http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf>. Accessed:
2013-11-02.

. Special Publication 800-63-1 – Electronic Authentication Guideline.
National Institute of Standards and Technology, U.S. Department of Commerce.
Gaithersburg, MD, USA, 2011. <http://csrc.nist.gov/publications/nistpubs/
800-63-1/SP-800-63-1.pdf>. Accessed: 2014-03-30.

NVIDIA. Tesla Kepler Family Product Overview. 2012. <http://www.nvidia.com/
content/tesla/pdf/Tesla-KSeries-Overview-LR.pdf>. Accessed: 2013-10-03.

. CUDA C Programming Guide (v6.5). 2014. <http://docs.nvidia.com/
cuda/cuda-c-programming-guide/>. Accessed: 2013-10-03.

PERCIVAL, C. Cache missing for fun and profit. In: Proc. of BSDCan 2005.
Ottawa, Canada: University of Ottawa, 2005.

. Stronger key derivation via sequential memory-hard functions. In:
BSDCan 2009 – The Technical BSD Conference. Ottawa, Canada: University of
Ottawa, 2009. See also: <http://www.bsdcan.org/2009/schedule/attachments/87_
scrypt.pdf>. Accessed: 2013-12-09.

PESLYAK, A. yescrypt - a Password Hashing Competition submission.
v1. Moscow, Russia, 2015. <https://password-hashing.net/submissions/specs/
yescrypt-v0.pdf>. Accessed: 2015-05-22.

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf
http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf
http://csrc.nist.gov/publications/nistpubs/800-63-1/SP-800-63-1.pdf
http://csrc.nist.gov/publications/nistpubs/800-63-1/SP-800-63-1.pdf
http://www.nvidia.com/content/tesla/pdf/Tesla-KSeries-Overview-LR.pdf
http://www.nvidia.com/content/tesla/pdf/Tesla-KSeries-Overview-LR.pdf
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://www.bsdcan.org/2009/schedule/attachments/87_scrypt.pdf
http://www.bsdcan.org/2009/schedule/attachments/87_scrypt.pdf
https://password-hashing.net/submissions/specs/yescrypt-v0.pdf
https://password-hashing.net/submissions/specs/yescrypt-v0.pdf

126

PHC. Password Hashing Competition. 2013. <https://password-hashing.net/>.
Accessed: 2015-05-06.

. Github of Argon2. 2015. Github ©. <https://github.com/p-h-c/
phc-winner-argon2>. Accessed: 2016-04-22.

. Password Hashing Competition. 2015. <https://password-hashing.net/
#phc>. Accessed: 2016-04-23.

. PHC status report. 2015. <https://password-hashing.net/report-finalists.
html>. Accessed: 2016-04-23.

. Public archives of PHC list. 2015. <http://dir.gmane.org/gmane.comp.
security.phc>. Accessed: 2015-05-18.

PHC wiki. Password Hashing Competition – wiki. 2014. <https:
//password-hashing.net/wiki/>. Accessed: 2015-05-06.

PROVOS, N.; MAZIÈRES, D. A future-adaptable password scheme. In: Proc.
of the FREENIX track: 1999 USENIX annual technical conference. Monterey,
California, USA: USENIX, 1999.

RISTENPART, T.; TROMER, E.; SHACHAM, H.; SAVAGE, S. Hey,
You, Get off of My Cloud: Exploring Information Leakage in Third-party
Compute Clouds. In: Proc.s of the 16th ACM Conference on Computer and
Communications Security. New York, NY, USA: ACM, 2009. (CCS ’09), p.
199–212. ISBN 978-1-60558-894-0.

RIVEST, R. L.; SHAMIR, A.; ADLEMAN, L. A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, ACM, New York,
NY, USA, v. 21, n. 2, p. 120–126, Feb 1978. ISSN 0001-0782.

SCHNEIER, B. Description of a new variable-length key, 64-bit block cipher
(Blowfish). In: Fast Software Encryption, Cambridge Security Workshop.
London, UK: Springer-Verlag, 1994. p. 191–204. ISBN 3-540-58108-1.

SCIENGINES. RIVYERA S3-5000. 2013. <http://www.sciengines.com/products/
discontinued/rivyera-s3-5000.html>. Accessed: 2015-05-02.

. RIVYERA V7-2000T. 2013. <http://sciengines.com/products/
computers-and-clusters/v72000t.html>. Accessed: 2015-05-02.

SHAND, M.; BERTIN, P.; VUILLEMIN, J. Hardware Speedups in Long
Integer Multiplication. In: Proceedings of the Second Annual ACM Symposium
on Parallel Algorithms and Architectures. New York, NY, USA: ACM, 1990.
(SPAA’90), p. 138–145. ISBN 0-89791-370-1.

SIMPLICIO JR, M. A. Message Authentication Algorithms for Wireless
Sensor Networks. Tese (Doutorado) — Escola Politécnica da Universidade
de São Paulo (Poli-USP), São Paulo, September 2010. Available from:
<http://www.teses.usp.br/teses/disponiveis/3/3141/tde-11082010-114456/>.
Accessed: 2015-03-17.

https://password-hashing.net/
https://github.com/p-h-c/phc-winner-argon2
https://github.com/p-h-c/phc-winner-argon2
https://password-hashing.net/#phc
https://password-hashing.net/#phc
https://password-hashing.net/report-finalists.html
https://password-hashing.net/report-finalists.html
http://dir.gmane.org/gmane.comp.security.phc
http://dir.gmane.org/gmane.comp.security.phc
https://password-hashing.net/wiki/
https://password-hashing.net/wiki/
http://www.sciengines.com/products/discontinued/rivyera-s3-5000.html
http://www.sciengines.com/products/discontinued/rivyera-s3-5000.html
http://sciengines.com/products/computers-and-clusters/v72000t.html
http://sciengines.com/products/computers-and-clusters/v72000t.html
http://www.teses.usp.br/teses/disponiveis/3/3141/tde-11082010-114456/

127

SIMPLICIO JR, M. A. Re: Competition process. 2015. <http://article.gmane.
org/gmane.comp.security.phc/2784>. Accessed: 2016-04-23.

SIMPLICIO JR, M. A.; BARBUDA, P.; BARRETO, P. S. L. M.; CARVALHO,
T.; MARGI, C. The Marvin Message Authentication Code and the
LetterSoup Authenticated Encryption Scheme. Security and Communication
Networks, v. 2, p. 165–180, 2009.

SIMPLICIO JR, M. A.; BARRETO, P. S. L. M. Revisiting the Security of
the Alred Design and Two of Its Variants: Marvin and LetterSoup. IEEE
Transactions on Information Theory, v. 58, n. 9, p. 6223–6238, 2012.

SODERQUIST, P.; LEESER, M. An area/performance comparison of
subtractive and multiplicative divide/square root implementations. In: Proc. of
the 12th Symposium on Computer Arithmetic, 1995. Bath: IEEEXplore, 1995.
p. 132–139.

SOLAR DESIGNER. New developments in password hashing:
ROM-port-hard functions. 2012. <http://www.openwall.
com/presentations/ZeroNights2012-New-In-Password-Hashing/
ZeroNights2012-New-In-Password-Hashing.pdf>. Accessed: 2013-03-23.

SPRENGERS, M. GPU-based Password Cracking: On the Security of
Password Hashing Schemes regarding Advances in Graphics Processing
Units. Dissertação (Mestrado) — Radboud University Nijmegen, 2011.
<http://www.ru.nl/publish/pages/578936/thesis.pdf>. Accessed: 2014-02-12.

SU, B.; WU, W.; WU, S.; DONG, L. Near-Collisions on the Reduced-Round
Compression Functions of Skein and BLAKE. In: Cryptology and Network
Security. Berlin, Germany: Springer Berlin Heidelberg, 2010, (LNCS, v. 6467).
p. 124–139. ISBN 978-3-642-17618-0.

SYNOPSYS. Design Compiler 2010. 2010. <http://www.synopsys.com/Tools/
Implementation/RTLSynthesis/DesignCompiler/Pages/default.aspx>. Accessed:
2016-04-25.

TERADA, R. Segurança de dados: Criptografia em redes de computador.
2, revisada e ampliada. ed. São Paulo, SP, Brazil: Blucher, 2008. ISBN
978-85-212-0439-8.

THOMAS, S. battcrypt (Blowfish All The Things). v0. Lisle, IL, USA, 2014.
<https://password-hashing.net/submissions/specs/battcrypt-v0.pdf>. Accessed:
2015-05-18.

TRENDFORCE. DRAM Contract Price (Jan.13 2015). 2015.
Http://www.trendforce.com/price (visited on Jan.13, 2015).

TRUECRYPT. TrueCrypt: Free open-source on-the-fly encryption –
Documentation. 2012. <http://www.truecrypt.org/docs/>. Accessed: 2014-09-01.

http://article.gmane.org/gmane.comp.security.phc/2784
http://article.gmane.org/gmane.comp.security.phc/2784
http://www.openwall.com/presentations/ZeroNights2012-New-In-Password-Hashing/ZeroNights2012-New-In-Password-Hashing.pdf
http://www.openwall.com/presentations/ZeroNights2012-New-In-Password-Hashing/ZeroNights2012-New-In-Password-Hashing.pdf
http://www.openwall.com/presentations/ZeroNights2012-New-In-Password-Hashing/ZeroNights2012-New-In-Password-Hashing.pdf
http://www.ru.nl/publish/pages/578936/thesis.pdf
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DesignCompiler/Pages/default.aspx
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DesignCompiler/Pages/default.aspx
https://password-hashing.net/submissions/specs/battcrypt-v0.pdf
http://www.truecrypt.org/docs/

128

WALLIS, W. D.; GEORGE, J. Introduction to Combinatorics. Florence,
Kentucky, USA: Taylor & Francis, 2011. (Discrete Mathematics and Its
Applications). ISBN 9781439806234.

WAZLAWICK, R. S. Metodologia de pesquisa para ciência da computação. Rio
de Janeiro: Elsevier, 2008. 184 p. ISSN 978-85-352-3522-7.

WEIR, M.; AGGARWAL, S.; MEDEIROS, B. d.; GLODEK, B. Password
Cracking Using Probabilistic Context-Free Grammars. In: Proc. of the 30th
IEEE Symposium on Security and Privacy. Washington, DC, USA: IEEE
Computer Society, 2009. (SP’09), p. 391–405. ISBN 978-0-7695-3633-0.

WU, H. POMELO – A Password Hashing Algorithm (Version 3). v3.
Nanyang Ave, Singapore, 2015. <https://password-hashing.net/submissions/specs/
POMELO-v3.pdf>. Accessed: 2015-05-18.

XILINX. ISE Design Suite. 2013. <http://www.xilinx.com/products/design-tools/
ise-design-suite.html>. Accessed: 2016-04-25.

. Vivado Design Suite. 2016. <http://www.xilinx.com/products/design-tools/
vivado.html>. Accessed: 2016-04-25.

YAO, F. F.; YIN, Y. L. Design and Analysis of Password-Based Key Derivation
Functions. IEEE Transactions on Information Theory, v. 51, n. 9, p. 3292–3297,
2005. ISSN 0018-9448.

YUILL, J.; DENNING, D.; FEER, F. Using deception to hide things from
hackers: Processes, principles, and techniques. Journal of Information Warfare,
v. 5, n. 3, p. 26–40, 2006. ISSN 1445-3312.

https://password-hashing.net/submissions/specs/POMELO-v3.pdf
https://password-hashing.net/submissions/specs/POMELO-v3.pdf
http://www.xilinx.com/products/design-tools/ise-design-suite.html
http://www.xilinx.com/products/design-tools/ise-design-suite.html
http://www.xilinx.com/products/design-tools/vivado.html
http://www.xilinx.com/products/design-tools/vivado.html

129

APPENDIX A. NAMING CONVENTIONS

The name “Lyra” comes from Chondrocladia lyra, a recently discovered type

of sponge (CREW, 2012). While most sponges are harmless, this harp-like sponge

is carnivorous, using its branches to ensnare its prey, which is then enveloped in

a membrane and completely digested. The “two” suffix is a reference to its prede-

cessor, Lyra (ALMEIDA et al., 2014), which displays many of Lyra2’s properties

hereby presented but has a lower resistance to attacks involving time-memory

trade-offs. Lyra2’s memory matrix displays some similarity with this species’

external aspect, and we expect it to be at least as much aggressive against ad-

versaries trying to attack it. ,

Regarding the multiplication-hard sponge, its name came from an attempt to

combined the name “Blake”, which is the basis for the algorithm, with the letter

“M”, for indicating multiplications. A natural (?) answer for this combination

was BlaMka, a misspelling of Blanka, the only avatar from the Street Fighter

original game series (CAPCOM, 2015) that comes from Brazil and, as such, is a

compatriot of this document’s authors. ,

130

APPENDIX B. FURTHER CONTROLLING

LYRA2’S BANDWIDTH USAGE

Even though not part of Lyra2’s core design, the algorithm could be adapted

for allowing the user to control the number of rows involved in each iteration of the

Visitation Loop. The reason is that, while Algorithm 5 suggests that a single row

index besides row0 should be employed during the Setup and Wandering phases,

this number could actually be controlled by a δ > 0 parameter. Algorithm 5 can,

thus, be seen as the particular case in which δ = 1, while the original Lyra is more

similar (although not identical) to Lyra2 with δ = 0. This allows a better control

over the algorithm’s total memory bandwidth usage, so it can better match the

bandwidth available at the legitimate platform.

This parameterization brings positive security consequences. For example,

the number of rows written during the Wandering phase defines the speed in

which the memory matrix is modified and, thus, the number of levels in the

dependence tree discussed in Section 5.1.3.2. As a result, the 2T observed in

Equations 5.5 and 5.8 would actually become (δ+1)T . The number of rows read,

on its turn, determines the tree’s branching factor and, consequently, the pro-

bability that a previously discarded row will incur recomputations in Equation

5.3.With δ > 1, it is also possible to raise the Setup phase minimum memory

usage above the R/2 defined by Lemma 1. This can be accomplished by choosing

visitation patterns for rowd>2 that force the attacker to keep rows that, otherwise,

could be discarded right after the middle of the Setup phase. One possible ap-

proach is, for example, to divide the revisitation window in the Setup phase into

131

δ contiguous sub-windows, so each rowd revisits its own sub-window δ times. We

note that this principle does not even need to be restricted to reads/writes on

a same memory matrix: for example, one could add a row2 variable that inde-

xes a Read-Only Memory chip attached to the device’s platform and then only

perform several reads (no writes) on this external memory, giving support to the

“rom-port-hardness” concept discussed in (SOLAR DESIGNER, 2012).

Even though the security implications of having δ > 2 may be of interest, the

main disadvantage of this approach is that the higher number of rows picked po-

tentially leads to performance penalties due to memory-related operations. This

may oblige legitimate users to reduce the value of T to keep Lyra2’s running time

below a certain threshold, which in turn would be beneficial to attack platforms

having high memory bandwidth and able to mask memory latency (e.g., using

idle cores that are waiting for input to run different password guesses). Indeed,

according to our tests, we observed slow downs from more than 100% to appro-

ximately 50% with each increment of δ in the platforms used as testbed for our

benchmarks (see Section 6). Therefore, the interest of supporting a customizable

δ depends on actual tests made on the target platform, although we conjecture

that this would only be beneficial with DRAM chips faster than those commerci-

ally available today. For this reason, in this document we do not explore further

the ability of adjusting δ to a value different than 1.

132

APPENDIX C. AN ALTERNATIVE DESIGN

FOR BLAMKA: AVOIDING LATENCY

One drawback of the BlaMka permutation function as described in Section

4.4.1 is that it has no instruction parallelism. In platforms where a legitimate

user can execute instructions in parallel (e.g., in modern x86 processors) this can

become disadvantage, as the design will not take full advantage of the hardware

available for the legitimate user. This potential disadvantage can be addressed

with a quite simple tweak, which consists in replacing the addition (+) introduced

by BlaMka by a XOR operation.

This alternative structure is shown in Figure 18, which shows Blake2b’s

original G function (on the left) and the two multiplication-hardened modified

functions proposed on this work, Gtls as described in Section 4.4.1 and an

alternative, XOR-based permutation hereby denoted called Gtls⊕ aiming at

reduced latency.

a ← a+ b

d ← (d⊕ a)≫ 32

c ← c+ d

b ← (b⊕ c)≫ 24

a ← a+ b

d ← (d⊕ a)≫ 16

c ← c+ d

b ← (b⊕ c)≫ 63

(a) Blake2 G function.

a ← a+ b+ 2 · lsw(a) · lsw(b)

d ← (d⊕ a)≫ 32

c ← c+ d+ 2 · lsw(c) · lsw(d)

b ← (b⊕ c)≫ 24

a ← a+ b+ 2 · lsw(a) · lsw(b)

d ← (d⊕ a)≫ 16

c ← c+ d+ 2 · lsw(c) · lsw(d)

b ← (b⊕ c)≫ 63

(b) BlaMka’s Gtls function.

a ← a+ b⊕ 2 · lsw(a) · lsw(b)

d ← (d⊕ a)≫ 32

c ← c+ d⊕ 2 · lsw(c) · lsw(d)

b ← (b⊕ c)≫ 24

a ← a+ b⊕ 2 · lsw(a) · lsw(b)

d ← (d⊕ a)≫ 16

c ← c+ d⊕ 2 · lsw(c) · lsw(d)

b ← (b⊕ c)≫ 63

(c) BlaMka’s Gtls⊕ function.

Figure 18: Different permutations: Blake2b’s original permutation (left),
BlaMka’s Gtls multiplication-hardened permutation (middle) and BlaMka’s
latency-oriented multiplication-hardened permutation Gtls⊕ (right).

133

This trick was originally proposed on NORX – a Parallel and Scalable Authen-

ticated Encryption Algorithm – (AUMASSON; JOVANOVIC; NEVES, 2014, Sec-

tion 5.1), but during the PHC, Samuel Neves, one of the authors of this algorithm,

suggested the possibility of using this approach also on BlaMka (NEVES, 2015).

With this modification, in principle a developer can trade a few extra instruc-

tions by reduced latency, shortening the execution’s pipeline, by implementing it

as follows:

a ← a+ b⊕ 2 · lsw(a) · lsw(b)
d ← (d⊕ a)≫ x

=⇒

t0 ← a+ b
t1 ← lsw(a) · lsw(b)
t1 ← t1 � 1
a ← t0 ⊕ t1
d ← d⊕ t0
d ← d⊕ t1
d ← d≫ x

This tweak saves up to 1 cycle per instruction sequence, leading to 4 instead

of 5 cycles for Gtls⊕ , at the cost of 1 extra instruction (see Figure 19). In a

sufficiently parallel architecture, this can save at least 4 × 8 cycles per round,

since a single round of BlaMka has 8 calls to its underlying permutation.

In our initial measurements, this modification represented a somewhat mo-

dest gain of performance in legitimate platforms, which reached up to 6% in Lyra2

when compared with BlaMka using the hereby adopted Gtls permutation. Howe-

ver, our tests revealed that the ability to obtain this gain would heavily depend

on the target architecture, coding, compiler, and type of vectorization. There-

fore, as it would be difficult to have the same gain in practice for all legitimate

platforms, while attackers could very well use dedicated hardware to take more

advantage of it than legitimate users, we preferred not to adopt this approach in

the design of the BlaMka sponge.

134

≫ x⊕

+

a

b

d

≪ 1·

+

d

a

(a) Naïve implementation of BlaMka’s Gtls instruction sequence.

≫ x⊕

+

a

b

d

≪ 1·

⊕

d

a

(b) Naïve implementation of BlaMka Gtls⊕ instruction sequence.

≫ x

+

a

b

d

≪ 1·

⊕

d

a

⊕ ⊕
(c) Latency-oriented version of BlaMka’s Gtls⊕ instruction sequence.

Figure 19: Improving the latency of G.

